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Abstract

Basic assumptions of two distributive network models designed to explain the 3/4 power scaling between metabolic rate and body

mass are re-analysed. It is shown that these models could have consistently accounted for the observed scaling patterns if and only if

body mass M had scaled as L4, where L is body length, in the model of Banavar et al. (1999, Nature 399, 130–132), or if spatial

volume VF occupied by the distributive network had scaled as M 3/4 in the model of West et al. (1997, Science 276, 122–126). Lack of

agreement between these predictions and observational evidence invalidates both models rendering them mathematically

controversial. It is further shown that consideration of distributive networks can nevertheless yield realistic values of scaling

exponents under the major assumption that living organisms are designed so as to keep the mass-specific metabolic rate of important

functional tissues in the vicinity of a size-independent optimum value. Mass-specific metabolic rate of subsidiary mechanical tissues

can be small and vary with body mass. Different patterns of spatial distribution of metabolically active biomass within the organism

result in different patterns of allometric scaling. From the available evidence the presumable optimum value of mass-specific

metabolic rate of living matter is estimated to be in the vicinity of 1–10Wkg�1.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Recent years witnessed a conspicuous rise in the
interest to theoretically account for the observed scaling
exponents a between whole-body metabolic rate B and
body mass M, BpMa. In particular, two models have
been developed, hereafter WBE97 (West et al., 1997)
and BMR99 (Banavar et al., 1999), both intending to
explain a ¼ 3=4 by considering properties of the
distributive networks delivering nutrients to all parts
of the organism.
e front matter r 2005 Elsevier Ltd. All rights reserved.
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In this paper it is shown that the WBE97 and BMR99
models make use of essentially the same, although
differently formulated, basic assumptions. Those very
assumptions yielding B / M3=4 unambiguously con-
strain the dependence between body mass M and Ld

as M / L4
d , where Ld is a linear size of the distributive

network. It is demonstrated that this prediction contra-
dicts the empirical evidence. This fact indicates that
the observed scaling patterns must have a different
explanation.
It is proposed that living matter can be characterized

by an optimum mass-specific metabolic rate bopt, which
is independent of body size and varies little from taxon
to taxon (Makarieva et al., 2005). Living bodies are
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organized so as to keep the mass-specific metabolic rate
of the most important tissues and controlling organs
near the optimum. Mass-specific metabolic rates of
subsidiary mechanical tissues can be much lower than
bopt and vary with body size. The various scaling
patterns for whole-body metabolism follow from
different patterns of spatial distribution of the metabo-
lically active mass with b ¼ bopt within the organism.
The developed approach also explains why the relative
mass of visceral organs in mammals should decrease
with body mass.
2. Distributive network of Banavar, Maritan and Rinaldo

(1999)

2.1. Model’s structure

Everywhere below the following notations are used:
M, mass of the organism; L, linear size of the spatial
volume occupied by the organism; Vd ,volume of the
distributive network (the cumulative volume of all
vessels). Note that in compact bodies of animals
M / L3, but this is not true in the general case.
In the BMR99 model, living body of linear size L is

divided into the so-called transfer sites, i.e. sites where
the distributive network terminates. If the mean distance
between neighboring sites is ls, the total number of sites
in the D-dimensional body is

Ns ¼ ðL=lsÞ
D: (1)

BMR99 state that the number of transfer sites scales as
LD, Ns / LD. By doing so, BMR99 implicitly assume
that ls is size invariant, ls / L0. Size invariance of
lsooL agrees with the postulate of BMR99 that ‘‘the
fundamental processes of nutrient transfer at the
microscopic level are independent of organism size’’.
BMR99 define whole-body metabolic rate B as ‘‘the

total amount of nutrients being delivered to the sites per
unit time’’ and state that B ‘‘scales as the number of sites
or as LD’’, B / LD. In a subsequent paper developing
this model (Banavar et al., 2002) it is explicitly stated
that ‘‘D ¼ 3 in most cases of interest’’ and that body
mass and volume scale as LD;M / LD. From this one
unambiguously concludes that B scales proportionally
to M, B / M and a ¼ 1. A similar conclusion has been
reached by Koz"owski and Konarzewski (2004) with
respect to the WBE97 model.
Hence, the intended derivation of a ¼ 3=4 by BMR99

contains a mathematical error. BMR99 state that as far
as B / LD and the total volume of an efficient
distributive network Vd scales as LDþ1, one has
B / V

D=ðDþ1Þ
d , which gives B / V

3=4
d for D ¼ 3. De-

manding additionally that Vd is proportional to body
mass, Vd / M, BMR99 conclude that B / M3=4.
Here lies the mathematical contradiction, because the
three relationships needed to obtain B / Ns / M ;

Ns / L3

Vd / L4

V d / M

9>=
>; ) M / L4, (2)

constrain body mass as M / L4. This cannot be
reconciled with the observed M / L3 for animals. That
is, either Vd / L4 and M / L3, but then Vd and M

cannot scale isometrically. Or Vd and M scale isome-
trically, but then, as far as M / L3, V d should also scale
as L3, and the main result of the BMR99 model, the
V d / L4 scaling, is invalidated.
Notably, this major problem with the BMR99 model

was first noted by Dodds et al. (2001), but, despite citing
the work of Dodds et al. (2001), Banavar et al. (2002)
did not respond to this fundamental criticism. Dodds
et al. (2001) suggested that the mathematical contro-
versy in the BMR99 model could be possibly avoided by
abandoning size invariance of the distance between
transfer sites ls. However, as shown above, the size-
invariance of ls is a basic assumption of the BMR99
model, from which all scaling relationships, including
B / M 3/4, originate. If ls were assumed to scale as Mx,
where xa0, then, at D ¼ 3, Ns would scale as Ns

/ M1�3x, see Eq. (1). As long as Vd scales as NsL (the
distributive network brings nutrients to Ns sites dis-
tributed along a linear scale L), this would give
V d / M4=3�3x. Demanding additionally that V d / M,
see Eq. (2), one obtains an equation on x, 4/3�3 x ¼ 1,
which solves at x ¼ 1/9. From this, applying the
assumption of BMR99 that B / Ns and taking into
account that Ns / M1�3x ¼ M2=3, one obtains
B / M2=3. Hence, if the BMR99 model were saved
from the mathematical controversy captured in Eq. (2),
it would yield the conventional 2/3 scaling instead of the
3/4 scaling. Note that this result, B / M2=3 / L2, is
directly obtained from V d / LNs, V d / L3 and B / Ns.
In the framework of the BMR99 model it corresponds
to the case when transfer sites are spread not within the
body volume (Ns / L3), but over the body surface
(Ns / L2).
2.2. Implicit assumptions of the BMR99 model

The Vd / LDþ1 scaling is proved by BMR99
to be valid for all efficient distributive networks
irrespective of their geometry. This scaling can be
therefore illustrated on the simplest example of tubes
with cross-section r2c going from a single point (central
source of nutrients) along a body of length L to Ns

transfer cites distributed evenly within the D-dimen-
sional volume LD. The mean length of such tubes is close
to L (with a geometric coefficient of the order of unity).
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One has therefore:

V d ¼ Lr2cNs ¼ Lr2cðL=lsÞ
D. (3)

BMR99 state that V d / LDþ1. This means that r2c , the
cross-section of terminate vessels, is implicitly assumed to
be size invariant, rc / L0, otherwise the scaling exponent
in the V d � L scaling would be different from D+1.
Flow of nutrients to each transfer site is

Fs ¼ rr2cuc. (4)

Here r is the volume density of nutrients and uc is the flow
rate in the terminate vessel. Whole-body metabolic rate
thus becomes B ¼ F sNs ¼ rr2cucðL=lsÞ

3. BMR99 state
that B / Ns / LD. This means that BMR99 implicitly
assume that Fs / L0. Coupling this assumption with the
above-discussed size invariance of rc and the explicit
assumption made by Banavar et al. (2002) that r / L0,
size invariance of F s is equivalent to size invariance of uc,
the rate of nutrient flow in the terminal vessels.
Summing up, BMR99 implicitly assume that r, uc, ls,

and rc are independent of L. As shown above, within
these assumptions one cannot obtain B / M3=4. On the
other hand, if these parameters were free to depend on
L, the B-M scaling would be fully determined by the
character of these dependencies. However, the BMR99
model would then be unable to predict the resulting
relationship between B and M, as far as this model does
not constrain these parameters.
It should also be noted that the reasoning of Banavar

et al. (2002) that the BMR99 model allows one to derive
a ¼ 3=4 irrespective of how the distance ls between
neighboring sites scales with L is incorrect (see also the
previous section). It is based on the statement (equiva-
lent to Eq. (3) of Banavar et al. (2002)) that
V d / ðL=lsÞB. Banavar et al. (2002) state that BMR99
proved Vd / ðL=lsÞB as a mathematical theorem.
However, it is clear from Eq. (3), which describes a
simple network conforming to the requirements of the
BMR99 model, that the relationship Vd / ðL=lsÞB is
only true for a size-independent ls, i.e. V d / LNs / LB,
which is the main result obtained by BMR99. Inserting
ls into the latter proportionality is misleading. On the
other hand, for a size-independent ls the relationship
V d / LB is only true if B / L3 / M, see Eq. (2). Hence,
the derivation of B / M3=4 from V d / ðL=lsÞB by
Banavar et al. (2002) contains the same mathematical
controversy as described by Eq. (2).
3. Distributive network of West, Brown and Enquist

(1997)

3.1. Model structure

The distributive network of The WBE97 model is a
space-filling fractal. At each kth hierarchical level from
aorta to capillaries (a total of N levels) each vessel
branches into n smaller vessels, each smaller vessel being
g times shorter, lkþ1=lk � g, and b times narrower,
rkþ1=rk � b, than the parent vessel. At each kth level
there are Nk vessels. WBE97 explicitly assume that uc

and rc, see Eq. (4), are size invariant and implicitly
assume the size invariance of r. Instead of fixing the
linear size between transfer sites ls, WBE97 demand that
the length lc of the terminal vessels (capillaries in the
cardiovascular terminology) is independent of body size.
In space-filling fractals, vessels of all hierarchical

levels are evenly distributed within one and the same
volume VF. Mathematically, this can be expressed as the
condition of volume preservation (West et al., 1997):

l3kNk ¼ l3kþ1Nkþ1 ¼ l30 / VF . (5)

Here l0 is the length of the zeroth level (aorta, N0 ¼ 1) in
the distributive network. The value of l0 characterizes
the linear size of the total volume VF occupied by the
fractal network. Note that the volume V d of the
distributive network (i.e. blood volume in animals,
volume of wood in plants) is not equal to the spatial
volume VF occupied by the network.
Writing Eq. (5) for the terminal vessels (capillaries),

l3cNc ¼ l30, one obtains

Nc ¼ ðl0=lcÞ
3. (6)

The number Nc of capillaries, terminal vessels, is
equivalent to the number of transfer sites in the
BMR99 model, Nc � Ns. The length of terminal vessels,
lc, is size invariant as well as the distance ls between
transfer sites in the BMR99 model. Thus, Eq. (6) in
WBE97 is mathematically equivalent to Eq. (1) in
BMR99 if one uses aorta length l0 instead of linear size
of the organism L and length of terminal vessels lc

instead of distance between transfer sites ls.
WBE97 assume that whole-body metabolism is

proportional to the number of capillaries, B / Nc.
BMR99 make an equivalent assumption that B is
proportional to the total number of transfer sites. (As
pointed out by the anonymous referee, this assumption
is not self-evident for basal metabolism, because in the
resting state some capillaries can be quiescent; this
assumption should be therefore more plausible for
maximum metabolism. Here it is worthy noting that in
mammals maximum whole-body metabolic rate does
not scale as M 3/4 (Weibel et al., 2004).)
WBE97 calculate the total blood volume Vd in their

distributive network as

V d 	
pr2c lcðgb

2
Þ
�N

1� ngb2
(7)

(Eq. (4) of West et al. (1997), see also Makarieva et al.
(2005) for a short derivation of the V d scaling from
the assumptions of the WBE97 model). As far as
g � lkþ1=lk, one has l0 ¼ g�Nlc. For the simplest case of
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area-preserving fractals (b ¼ g3=2) Eq. (7) yields V d / l40.
Additionally demanding that volume V d be propor-
tional to body mass M, the WBE97 model must satisfy a
system similar to Eq. (2):

Ns / l30

V d / l40

V d / M

9>=
>; ) M / l40. (8)

In other words, the 3/4 scaling in the WBE97 model is
retrieved from the fact that the number of capillaries
Nc / l30 scales as 3/4 power of the network volume
V d / l40. If Vd is put proportional to M, this yields
B / M3=4. If V d scaled differently with M, a different
scaling of metabolism with body mass would result.
The three relations in the left-hand side of Eq. (8)

yield B / Ns / M3=4 if only M / l40. The BMR99 model
starts from l0 ¼ L by stating that the linear size of the
distributive network coincides with that of the body size.
This immediately results in the contradiction with the
observed M / L3 in animals. The WBE97 model avoids
this mathematical pitfall by introducing l0 as an
independent scale, which does not have to be propor-
tional to body length L. However, this creates another,
logical contradiction; because the distributive network
designed to ‘‘supply all parts of the organism’’ (West
et al., 1997) must stretch along the whole body of length
L rather than to be confined to its own spatial scale l0.
As shown below, the available evidence for animals
disproves the possibility of two linear scales l0 and L

existing in the organism.

3.2. WBE97 as applied to animals

First, direct observations show that aorta length in
mammals scales approximately as one-third power of
body mass, that is, M / l30 instead of M / l40 demanded
by the WBE97 model. Peters (1983) cites the work of
Table 1

Scaling of aorta length and capillary density in mammals; d is the observed s

the first column of the table, M is body mass

Variable

Total aorta length

Total aorta length

Aorta length, from valves to left renal artery

Aorta length, from valves to right renal artery

Aorta length, from valves to brachiocephalic artery

Aorta length, between intercostal arteries

Mean

Capillary density (CD, mm�2) per unit cross-sectional area of tissue

CD, semitendinousus

CD, longissimus dorsi

CD, vastus medialis

CD, diaphragm

Mean
Günter and Léon de la Barra (1966) who found
that total aorta length scales as M0:32. Calder (1984)
lists several more scaling exponents for lengths of
various aorta parts based on the study of Holt et al.
(1981) of mammals ranging 38,000-fold in body mass
(from mice to cows). In agreement with the previous
work, Holt et al. (1981) found that total aorta
length (from the valves to bifurcation) scales as M0:32

and equals about 16 cm for a 1-kg mammal. Length of
aorta from the valves to the left and right renal arteries
scales as M0:33 and M0:34, respectively, and is about
11 cm for a 1-kg mammal. Length of aorta from the
valves to brachiocephalic artery scales as M0:28, while
length of aorta between intercostal arteries scales as
M0:36. Note that the latter two lengths pertain to very
small segments of aorta (1 cm and 0.6 cm, respectively,
for a 1-kg mammal) not relevant to the characteristic
linear space scale of aorta. Summarized in Table 1, the
available estimates are in disagreement with the 1/4
scaling for aorta length expected from the WBE97
model. West et al. (1997) make an explicit prediction for
aorta length as scaling as M1=4; the data reported by
Peters (1983) and Calder (1984) are used by West et al.
(1997) in their Table 1 aimed to test the agreement
between observations and the various scaling predic-
tions of the WBE97 model. However, in Table 1 of West
et al. (1997) there is no mentioning of aorta length; the
evidence given in Peters (1983) and Calder (1984) on
the scaling of aorta length as M1=3, unsupportive of the
WBE97 model, was ignored by West et al. (1997). The
observed scaling of aorta length as M1=3 is consistent
with the physically and biologically sound expectation
that the distributive network should stretch along the
whole body of length L, l0 / L / M1=3. However,
putting l0 / L turns Eq. (8) into Eq. (2) of the
BMR99 model and leads to the contradiction between
the demanded M / L4 and the observed M / L3 in
animals.
caling exponent in the relationship y p Md, where y is a variable from

d Reference

0.32 Günter and Léon de la Barra (1966)

0.32 Holt et al. (1981)

0.33 Holt et al. (1981)

0.34 Holt et al. (1981)

0.28 Holt et al. (1981)

0.38 Holt et al. (1981)

0.33 versus WBE97 predicted 1/4 ¼ 0.25

�0.138 Hoppeler et al. (1981)

�0.10 Hoppeler et al. (1981)

�0.097 Hoppeler et al. (1981)

�0.045 Hoppeler et al. (1981)

�0.095 versus WBE97 predicted �1/6 ¼ �0.17
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Second, if M scaled as l40, then the spatial volume
V F / l30 occupied by the distributive network, see
Eq. (5), should scale as V F / M3=4 and increase in
relative size with decreasing body size. This yields an
unrealistic pattern that in small animals the volume
occupied by the distributive network will be larger than
body volume itself. To demonstrate this, it is necessary
to express VF in terms of measurable physiological
variables. Assuming spherical geometry as WBE97 did,
V F can be written as VF ¼ 3=4pðl0=2Þ

3
	 0:5l30, see

Eq. (5) and West et al. (1997).
Then one can write the ratio V F=V (where V / M is

body volume) as

V F

V
¼ 0:5

l30
V

¼ 0:5
Ncl3c

V
� 0:5

l3c

l3s
. (9)

Here V S � l3s � V=Nc is the service volume, that is, the
body volume served by one capillary. Capillary density
rS per unit cross-sectional area of tissue is then equal to
rS ¼ 1=l2s . Another variable commonly measured in
physiological studies is the capillary length density rld ,
which is the total length of capillaries in a given volume,
rld ¼ lc=l3s . The dimensionless ratio of these variables is
equal to rld=rS ¼ lc=ls. These relationships allow to re-
write Eq. (9) as

V F

V
� 0:5

l3c

l3s
¼ 0:5

rld

rS

� �3

. (10)

Kanatous et al. (2001) report rld and rS for a variety of
muscle tissues in seal and dog with body masses of about
20 kg. The mean ratios rld=rS are very similar in both
species and constitute 1.31 and 1.28 in seal and dog,
respectively. From Eq. (10) this gives VF=V 	 1. (Note
that numerically this result is true to the accuracy of a
geometric coefficient of the order of unity, which
describes the particular geometric patterns of vessels
orientation in tissues.) This remarkable result means
that the distributive networks in these mammals are
indeed filling the entire body volume.
Hence, if the volume VF filled by the distributive

network is already equal to body volume V in animals
with M1 ¼ 20 kg, but it scales as V3=4, this leads to an
unrealistic result that in a shrew with M2 ¼ 2 g the
volume occupied by the distributive network (that is, by
the cardiovascular system) should be ðM1=M2Þ

1=4
¼ 10

times larger than body volume itself! Note that this
controversy inherent to the WBE97 model is different
from the situation discussed by Banavar et al. (2002),
who wrote that blood volume Vd cannot grow as M4=3,
because in such a case large animals should have largely
consisted of blood only. In the case of the WBE97 model
the controversy pertains not to the scaling of the blood
volume V d , but to the scaling of the spatial volume V F

embraced by the distributive network.
On the other hand, if one does not put V F ¼ V but
introduces V F as a formal variable changing freely with
body size, there are no longer physical or biological
grounds for Eq. (5), which therefore becomes just a
mathematical axiom. If so, one is free to introduce any
other similar condition at one’s discretion: for example,
to make the network fill surfaces ðNkl2k ¼ Nkþ1l

2
kþ1Þ or

lengths ðNklk ¼ Nkþ1lkþ1Þ or, referring to the fashion-
able fourth dimension, equate the fourth powers of the
corresponding variables ðNkl4k ¼ Nkþ1l

4
kþ1Þ. In other

words, if no physical or biological interpretation in
terms of measurable variables is assigned to V F , then the
only reason for choosing the particular form of Eq. (5) is
the goal to obtain the 3/4 scaling, which makes the
approach of WBE97 circular. At the same time, putting
V ¼ V F in the WBE97 model leads to the biological
controversy discussed above. It can be therefore
concluded that the WBE97 model cannot account for
the scaling exponents in animals remaining simulta-
neously within the domains of biological and physical
plausibility and mathematical coherence.
Finally, the WBE97 model predicts that the service

volume V S � V=Nc, i.e. volume served by one capillary,
should scale as M1=4. This means that capillary density
per unit volume, rV , should scale as rV / M�1=4;
capillary density per unit cross-sectional area of tissue,
rS, should scale as rS / r2=3V / M�1=6; capillary density
per unit body length, rL, should scale as
rL / r1=3V / M�1=12. (Note that rL, the number of
capillaries per unit body length, dimension [mm�1], is
not equal to rld , dimension [mm�2], which is the total
length of capillaries in a unit volume.) In their Table 1,
West et al. (1997) list a variable called ‘‘density of
capillaries’’. It has a predicted exponent of �1/
12 ¼ �0.083 and, hence, corresponds to rL, capillary
density per unit body length, dimension [mm�1]. In the
column ‘‘observed exponent’’ West et al. (1997) list a
value of �0.095, which is relatively close to the predicted
value �0.083.
Where does the value of �0.095 originate from?

Peters (1983), one of the three sources of the observed
scaling exponents in Table 1 of West et al. (1997), lists
four values of the scaling exponent for mammalian
capillary density in different parts of the body based on
the study of Hoppeler et al. (1981). These four values,
�0.138, �0.10, �0.097 and �0.045, Table 1, have a
mean value of �0.095, suggesting that Peters (1983) is
the source of data for the observed exponent for the
variable called ‘‘capillary density’’ in Table 1 of West
et al. (1997). However, the scaling exponents reported
by Peters (1983) refer to capillary density per square
millimetre (!), that is, to the capillary density per unit
cross-sectional area of tissue, rS, for which the WBE97
model prediction is �1/6 ¼ �0.17 and not �1/
12 ¼ �0.083, as for rL, capillary density per unit body
length, dimension [mm�1].
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The difference between the observed exponents for rS

and the one predicted by the WBE97 model is in fact
very substantial, �0.095 versus �0.17 on average and
�0.05 versus �0.17 in the diaphragm, Table 1. Hence,
the relative agreement between the columns ‘‘predicted
exponent’’, �0.083, and ‘‘observed exponent’’, �0.095,
in Table 1 of West et al. (1997) with respect to variable
‘‘capillary density’’ was obtained by West et al.
(1997) by erroneously matching the predicted and
observed exponents for different variables of different
dimensions.

3.3. WBE97 model as applied to plants

Plants are not compact bodies and can therefore
disobey the trouble-making M / L3 law. The distribu-
tive network in vascular plants constitutes most part of
plant mass, so the condition Vd / M in plants is
automatically guaranteed. Length l0 of the distributive
system naturally corresponds to plant height H ; l0 	 H.
The distributive network in plants terminates in Nc leaf
petioles servicing Nc leaves. If leaf size is independent of
plant height, then the total foliage mass ML is
proportional to Nc. Hence, if the WBE97 model
correctly captures the plant architecture, it would
predict ML / M3=4 from Eq. (8). But this result would
be only supportive of WBE97 approach if the second
prediction is also empirically confirmed, namely that
H / M1=4 (West et al., 1999), see Eq. (8). In the general
case this is not so.
There are very few studies reporting an allometric

relationship between plant height and total plant mass
(or stem mass, which is an estimate of total plant mass in
Table 2

Parameters of the log-log regression of plant mass M on plant height H for sev

S stem mass, n number of plants studied. We retrieved the data of Walker et a

metadata/lterdb52.htm, and performed the OLS log-log regression

Species Height range, m d

Acacia harpophylla 0.6–3.2 T 2.150

Cassia nemophila 0.6–2.0 S 3.297

Dodonaea viscosa 0.2–2.0 S 3.380

Eremophila bowmanii 0.2–1.8 S 3.522

Eremophila mitchelli 0.6–5.0 S 3.002

Geijera parviflora 0.6–4.5 S 3.442

Myoporum deserti 0.2–2.0 S 3.030

Acacia aneura o 4.5 S 2.404

Eremophila sturtii o 4.5 S 3.246

Anthriscus sylvestris 0.1–1.8 S 3.46

Changium smyrnioides 0.1–1.7 S 2.26

Cecropia peltata 0.05–5 T 1.39

Heterotrichum cymosum 0.03–2.2 T 1.54

Phytolacca rivinoides 0.025–1.8 T 1.71

Piper hispidium 0.3–1.5 T 2.23

Piper treleaseanum 0.035–1.1 T 1.50

Solanum torvum 0.08–2.7 T 1.67

Mean d ¼ 2.5470.19 (S.E.) versus WBE97 predic
woody plants). For example, among over 150 allometric
relationships reported for Australian plants (Eamus
et al., 2000; Keith et al., 2000) only 9 have the form
M / Hd and all these pertain to shrubs with Ho5m.
The majority of studies relate M to stem diameter D.
Such a situation is conditioned by the fact that there is

no general dependence between plant mass and plant
height. As is well known, growth of the plant in the
vertical direction greatly decelerates as the plant
approaches maturity, which is mathematically described
by various sigmoid-like curves (Yuancai and Parresol,
2001). At sufficiently large size the dependence between
plant mass and plant height vanishes altogether,
H / M0 instead of H / M1=4 demanded by the
WBE97 model.
For those species where height is a good predictor of

plant mass, the available evidence rules out the M / H4

scaling demanded by the WBE97 model, Table 2. The
observed mean scaling exponent for seventeen species
d ¼ 2:54
 0:19 (S.E.).
There is indirect evidence that M / H4 can be

observed in some tree species. For the case of surface-
preserving fractals the WBE97 model constrains the
dependence between vessel radius rk and vessel length lk

as r2k / l3k. This follows from Eq. (5), lkþ1=lk ¼

Nkþ1=Nk � n and the condition of area preservation,
r2k ¼ nr2kþ1. When applied to the plant as a whole, this
means that plant height H scales as two thirds of stem
diameter D, H / D2=3. If the total plant mass is
approximated by stem mass, a cylinder of height H

and diameter D, one has M / D2H / H4. The H / D2=3

scaling is indeed observed in a diversity of species
(Prothero, 1999). (McMahon (1973) theoretically
eral species of vascular plants, log M ¼ a+d log H. T total plant mass,

l. (1996) from the LTER web page, http://luq.lternet.edu/data/lterdb52/

R2 n P Source

0.86 29 Eamus et al. (2000)

0.88 19 Eamus et al. (2000)

0.88 40 Eamus et al. (2000)

0.94 18 Eamus et al. (2000)

0.92 18 Eamus et al. (2000)

0.96 9 Eamus et al. (2000)

0.92 17 Eamus et al. (2000)

0.94 19 Keith et al. (2000)

0.94 22 Keith et al. (2000)

0.82 o0.05 Chang et al. (2004)

0.95 o0.01 Chang et al. (2004)

0.85 11 o0.001 Walker et al. (1996)

0.89 12 o0.00001 Walker et al. (1996)

0.96 10 o0.00001 Walker et al. (1996)

0.93 7 o0.001 Walker et al. (1996)

0.95 10 o0.0001 Walker et al. (1996)

0.90 9 o0.0001 Walker et al. (1996)

ted d ¼ 4.00

http://luq.lternet.edu/data/lterdb52/metadata/lterdb52.htm
http://luq.lternet.edu/data/lterdb52/metadata/lterdb52.htm
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accounted for the H / D2=3 scaling based on the
principle of elastic similarity.) For such species the
WBE97 model could possibly account for the depen-
dence between foliage mass and stem mass of the species.
However, this prediction of WBE97 model is not

equivalent to B / M3=4, which WBE97 claim to have
explained. In order to obtain B / M3=4 from ML /

M3=4 it is necessary to postulate that B / ML (Enquist
and Niklas, 2002). This statement means, first, that
plant metabolism B is equal to metabolism of leaves BL

and, second, that mass-specific metabolic rate of leaves
bL is independent of plant size. Then one has B 	 BL ¼

bLML / ML and B / M3=4 is obtained from
ML / M3=4. However, if one postulated bL / Mx;
xa0, instead of bL ¼ const / M0, one would obtain
from the WBE97 predicted ML / M3=4 that
B / M3=4�x. The postulate bL ¼ const corresponds to
one of the basic WBE97 assumptions that uc, the rate of
flow in terminal vessels, is independent of body size.
Namely, this assumption, for which WBE97 do not give
any justification, fully determines the character of the
dependence between metabolism and body size.
The predicative power of the WBE97 model is

therefore confined to evaluating the interdependence
between the various parts of the distributive network
WBE97 constructed, e.g. how the number of capillaries
scales with the total network volume, etc. The extension
of these predictions to the dependence between meta-
bolic rate and body size is made axiomatically by
postulating uc ¼ const. Neither a ¼ 3/4 nor any other
metabolic scaling is an inherent property of WBE97
distributive network.
4. Optimal value of mass-specific metabolic rate in the

living matter

BMR99 postulated that ‘‘the fundamental processes
of nutrient transfer at the microscopic level are
independent of organism size’’. WBE97 implicitly used
bL ¼ const to derive a ¼ 3/4 for plants. As demon-
strated below, these statements reflect a fundamental
property of the living matter (Makarieva et al., 2005),
which reconciles the controversies discussed in the
previous sections and allows one to obtain realistic
values of a from consideration of distributive networks.
We propose that living organisms are designed so as

to keep the energy supply of their most important tissues
at a constant, size-independent rate bopt, which con-
stitutes the optimal value of mass-specific metabolic rate
b of the living matter (Gorshkov et al., 2000). Metabolic
requirements bi of subsidiary tissues (e.g. mechanical
ones) can be much lower than bopt and vary freely with
body size. The living body can be therefore approxi-
mately divided into metabolically active Ma and
metabolically inactive Mi parts, M ¼ Ma þ Mi. We
also assume that ba ¼ boptbbi to satisfy

B ¼ baMa þ biMi 	 boptMa ¼ Ba. (11)

The proposed universality of bopt in the metabolically
active tissues imparts a profound biological meaning to
the central assumption of the BMR99 and WBE97
models, namely to the size invariance of terminal
microscopic processes delivering nutrients to living
tissues. Indeed, size invariance of the flow rate F s,
Eq. (4), to each unit mass of the metabolically active
tissues is dictated by the need to maintain mass-specific
metabolic rate b near the optimum at all sizes,
b ¼ bopt / Fs / L0. If b were free to vary with body
size, the size invariance of parameters determining Fs, in
particular, the size invariance of flow rate uc in the
terminal vessels explicitly demanded by WBE97, would
have no biological justification and remain just a formal
mathematical assumption.
Our distributive network terminates in Ns vessels

supplying Ns metabolically active service volumes Vs �

l3s at a size-independent rate F s. Service volumes are
independent of body size, so that at bopt ¼ const
metabolic rate B is simply proportional to their number,
B ¼ boptMa ¼ boptV sNs. Note that the size-independent
service volumes are assumed to be located in the
metabolically active tissue only and their cumulative
mass Ma is not equal to total body mass M.
We also make use of the fact that the volume of

efficient distribution network Vd is proportional to the
number Ns of service volumes multiplied by the mean
distance Ld between the central source of nutrients and
service volumes:

V d / LdNs (12)

4.1. Metabolic scaling in mammals

As is well known, most part of basal metabolism in
mammals is due to visceral organs, which constitute a
small portion of total body mass, but feature very high
mass-specific metabolic rates (Couture and Hulbert,
1995; Wang et al., 2001; Porter, 2001). For example, in
humans the mass-specific metabolic rate of the brain is
23 and 33 times higher than that of skeletal muscles and
skin, respectively (Aiello and Wheeler, 1995). The same
situation is observed in other vertebrates, particularly
fish (Nilsson, 1996; Oikawa and Itazawa, 2003).
To introduce a general framework for deriving scaling

exponents in organisms containing metabolically active
and metabolically inactive tissues, we put for simplicity
Ma ¼ Mbrain and B 	 Bbrain ¼ boptMbrain ignoring the
other visceral organs. The number of service volumes Ns

in the brain is proportional to Mbrain, Ns / Mbrain. The
brain is concentrated in a particular part of the animal
body, while the distributive network spreads over the
entire body of length L. Hence, the mean distance Ld to
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the brain from the central source of nutrients is
proportional to L, so Vd / LMbrain. Demanding that
V d scales proportionally to body mass M (Vd has the
meaning of blood volume in mammals), one obtains the
following analogue of Eq. (2):

Ns / Mbrain

V d / LMbrain

Vd / M

9>=
>; ) Mbrain / M=L (13)

Assuming M / L3; one obtains from Eq. (13) that brain
mass, as well as the whole-body metabolic rate, should
scale as

B / Mbrain / L2 / M2=3. (14)

In a sample of 174 mammals for which both the basal
metabolic rate B and brain size were known, Mbrain

scaled as M0.68, while B scaled as M0.69 (McNab and
Eisenberg, 1989).
This consideration adds support to the statement that

the 2/3 scaling is the basic one in the organisms where,
like in mammals and birds, basal metabolism is largely
due to the functioning of compact visceral organs with
slowly changing mass-specific metabolic rate (Dodds
et al., 2001; Makarieva et al., 2003; White and Seymour,
2003). Recently, Savage et al. (2004) proposed that an a
value close to 3/4 in mammals can be obtained if one
formally diminishes the relative portion of the smallest
mammals in the considered database. Savage et al. did
so by dividing the mammalian body mass range into
equal logarithmic intervals and plotting the log-trans-
formed mean B values against mean body mass values in
each logarithmic intervals. This procedure moved the
resulting scaling exponent towards the intended 3/4
value. However, such derived a value is not comparable
to a values obtained in other taxa by the conventional
procedure (i.e. log–log plotting all the species). Accord-
ing to Makarieva et al. (2003), reducing the share of
small species and, consequently, elevating the share of
large species in the log–log plot should lead to an
increase in the scaling exponent from a ¼ 2=3 towards
unity. Small-sized species constitute the majority in
virtually all taxa, see, for example May (1978). The
procedure suggested by Savage et al. may change the
scaling exponents in other taxa as well, including those
which currently provide support for the 3/4 rule.
It should be emphasized that Eq. (13) provides a

general framework for understanding the fact why the
relative size of visceral organs should decrease with
growing body size. The particular scaling exponents in
Eqs. (13) and (14) come from the proposition that the
animals try to keep the mass-specific metabolic rate of
most important tissues close to the metabolic optimum
bopt irrespective of body size. Direct measurements
indicate that this goal appears not to be 100%
achievable. Mass-specific metabolic rate of visceral
organs does decrease with growing body mass, but this
decrease is significantly slower than for the mean mass-
specific metabolic rate of the whole body. While mean
mass-specific metabolic rate in mammals decreases as
b / M�m, where m 	 0:3, the characteristic m values for
tissue slices from various organs are all much lower, 0.17
for liver, 0.07–0.11 for kidney cortex, 0.10 for lung and
0.07 for brain (Couture and Hulbert, 1995). Similar
exponents are derived from in vivo estimates, all, with
but one exception lower than 0.25 (m ¼ 0:27 for liver,
0.14 for brain, 0.12 for heart and 0.08 for kidney) (Wang
et al., 2001). At the same time, mass of visceral organs
grows more rapidly than M 2/3 (Wang et al., 2001). It is
interesting that these deviations from the proposed m ¼

0 and the 2/3 scaling of organs’ body mass appear to
compensate each other. Metabolic rate Ba 	 B of all the
visceral organs combined (liver, brain, kidneys and
heart) scales as M0:69 (Wang et al., 2001), close to the
M2=3 scaling expected for metabolically active tissues
from Eq. (14).

4.2. Scaling of plant architecture

Metabolically active mass of plants can be approxi-
mated by the mass of all leaves, Ma 	 ML. Wood which
constitutes most part of plant mass in trees is largely
metabolically inactive (Makarieva et al., 2003). Plant
stems incorporate vessels bringing nutrients to each leaf
at a size-independent rate F s dictated by the value of
bopt. Total flux via the stem is therefore proportional to
the stem cross-section, which means that ML should
scale as squared stem diameter D2;ML / DaL , aL ¼ 2.
This prediction is on average supported by observations,
see below. However, aL can differ from species to
species, as far as in many species only some part of the
stem (sapwood) conducts nutrients. The particular value
of aL will be determined by how the cross-sectional area
of this part of the stem depends on stem diameter.
Solar energy, the source of energy for plants, is

delivered per unit area. To make use of all incoming
energy, leaves must form a continuous cover. That is,
the neighbouring projections of leaf blades on the
ground plane must be adjacent to each other. Maximum
thickness d of this continuous cover (determined by leaf
thickness and the degree of overlap between leaves) is
dictated by the incoming flux F of solar energy,
F / boptd, and is independent of plant size (Makarieva
et al., 2003). This means that the maximum density of
metabolically active mass per unit surface area is
generally size independent.
If foliage of mass ML / D2 is spread over the surface

of a spherical crown at a size-independent density, then
the mean distance Ld from the stem to the leaves is
proportional to the sphere radius and, hence, to stem
diameter D, Ld / D. One thus obtains V d / D3 from
Eq. (12). The volume V d of the distributive network
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within the crown can be approximated by mass of
branches, V d / MB. One has therefore MB / D3 and
ML / M

2=3
B . Generally, if ML / DaL and MB / DaB , the

above logic for a surface-spread foliage predicts aB ¼

3/2 aL.
If foliage of mass ML / DaL is spread within the

volume of a spherical crown, then the radius of such a
crown describing the mean length of the branches is
proportional to DaL=3, Ld / DaL=3 and MB / D4aL=3,
which gives MB / D8=3 for aL ¼ 2. Hence, for a volume-
spread foliage aB ¼ ð4=3ÞaL. Note that particular
form of the crown is not essential for deriving these
relationships.
Finally, for tall trees with long branches and a narrow

crown, the distance from the stem to the leaves is largely
determined by crown height and can be independent of
diameter D. In such cases the mass of branches and the
mass of leaves will scale isometrically, proportionally to
crown height, that is, aL ¼ aB.
Using several sources of data (Eamus et al., 2000;

Keith et al., 2000; Martin et al., 1998; Vann et al., 1998;
Ross et al., 2001) 79 pairs of values aB, aL corresponding
to 79 studies of over 50 tree species were collected,
Fig. 1. Mean values were aL ¼ 2:07
 0:07 (S.E.) and
aB ¼ 2:63
 0:07. Linear regression of aB on aL revealed
a great deal of correlation between the two parameters,
R2 ¼ 0:38, Po0:00001. Three predicted lines, aB ¼ 3=2
aL, aB ¼ 4=3 aL and aB ¼ aL, dictated by different
spatial distributions of leaves, embrace the majority of
empirical points indicating that all the three patterns of
Fig. 1. Dependence of the scaling exponent aL, ML / DaL , where ML

is foliage mass, D is stem diameter, on the scaling exponent aB, MB /

DaB , where MB is mass of branches based on 79 studies of over 50 tree

species (Eamus et al., 2000; Keith et al., 2000; Martin et al., 1998; Vann

et al., 1998; Ross et al., 2001). Straight lines correspond to theoretically

predicted relationships for 1: aB ¼ 3=2 aL surface-spread foliage, 2:

aB ¼ 4=3 aL volume-spread foliage, 3: aL ¼ aB foliage of tall narrow

crowns.
crown geometry are likely to be realized in the trees
studied.
For comparison, regression of aL on aS and aT , where

aS and aT describe how total mass MT and stem mass
MS scale with stem diameter, MT p DaT , MS p DaS

based on the same data revealed much lower correlation
(R2 ¼ 0:17, P ¼ 0:003, n ¼ 49 for aT and R2 ¼ 0:08,
P ¼ 0:02, n ¼ 66 for aS). This indicates that there is no
direct functional dependence between the properties of
the metabolically active mass of leaves and metaboli-
cally inactive wood, which principally serve different
functions.
While the role of leaves is to drive the plant’s

energetics, the role of woody tissues mainly consists of
overcoming the gravity and distributing leaves in the
three-dimensional space above the ground, in order to
ensure maximum light capture. Aquatic photosynthesiz-
ing organisms do not have this problem, as long as their
specific density approximates that of water and the
gravitational forcing is almost absent. Therefore, most
part of primary productivity in the oceans is due to
unicellular organisms lacking mechanical structures like
wood.
These different roles played by mechanical metaboli-

cally inactive and functional metabolically active tissues
in plants result in the observed lack of any general
relationship between apparent plant size (largely deter-
mined by mechanical tissues) and its metabolism.
Indeed, at a given latitude, primary productivity of
forests and bogs or pastures that may differ by two or
more orders of magnitude in characteristic plant
height can be similar (Whittaker, 1975). This is the
natural consequence of the major feature of plant
energetics—solar energy, the source of energy for
plants, is delivered per unit area, so whatever the
plant height, its surface-specific metabolic rate is
dictated by the size-independent value of the incoming
flux of solar energy. It was argued (Makarieva et al.,
2003) that there is no biological sense in relating the
total metabolic rate of plants to total plant mass.
However, by recognizing the metabolic inequity of
leaves and wood it is possible to describe some simple
properties of plant architecture from consideration of
the distributive networks.
5. Discussion

The performed analysis of the internal logic of the
WBE97 and BMR99 models revealed that these models
could have explained the observed B / M3=4 if and only
if body mass M had scaled as L4, where L is body
length, in the BMR99 model and if volume V F occupied
by the distributive network had scaled as M3=4 in the
WBE97 model. These scaling relationships strongly
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Table 3

Characteristic values of preferred mass-specific metabolic rate bopt in

various groups of organisms, H is linear size of the organism (height in

plants). See text for sources of the data

Taxon bopt,

Wkg�1
T, 1C H, m

Mammals, basal rate, 300 g 4.0 37 �0.1

Mammalian brain, in vivo mean

for 5 species

10.5 37

Terrestrial arthropods,

standard rate, 0.0002 g

3.3 25 0.002

Conifers, leaf dark respiration 2.2 25 35

Broad-leaved trees and shrubs,

leaf dark respiration

5.8 25 11

Broad-leaved trees, leaf dark

respiration

4.2 19–26 �0.1

Forbs, leaf dark respiration 12 25 0.6
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contradict the empirical evidence in animals and are
generally not true in plants.
We have argued that consideration of distributive

networks can yield realistic values of a if one accepts
that living matter has a preferred optimum size-
independent value of mass-specific metabolic rate bopt.
Living organisms strive to keep their mass-specific
metabolic rate near the optimum, at least in the most
important functional tissues, like, for example, plant
leaves or animal brains. Mass-specific metabolic rate of
subsidiary tissues can be either negligibly small (plant
wood) or decrease rapidly with growing body size in
animals.
What is the absolute value of the optimum mass-

specific metabolic rate, and is it uniform for the entire
domain of life? The above consideration suggests that
within each animal taxon there is likely an optimum
body size Lopt, for which all tissues of the organism
feature one and the same optimum mass-specific
metabolic rate. As is well known, the distribution of
species numbers over body size within different taxa
peaks in the region of smaller body sizes (May, 1978). It
is natural to expect that these peaks correspond to the
optimum body size Mopt, corresponding to the optimum
mass-specific metabolic rate bopt. Thus, comparison of
mass-specific metabolic rates at those body sizes where
species number peaks across different taxa would help
reveal the degree of universality of bopt in the living
world.
Here we present an outline of such an analysis. For

terrestrial arthropods B ¼ 0:97M0:856, where B is in mW
and M in grams (Lighton et al., 2001). The number of
species in tropical beetles, the largest clade in terrestrial
arthropods, peaks in the vicinity of Lopt 	 2mm body
length (Morse et al., 1988), which corresponds to a body
mass of around Mopt 	 2� 10�4 g (Stork and Black-
burn, 1993) and bopt 	 3:3Wkg�1. Mammalian species
numbers (excluding bats), on the other hand, peak at
around Mopt 	 300 g (May, 1978). This corresponds to
a metabolic rate of around bopt 	 4:0Wkg�1 (Savage
et al., 2004) and is close to the corresponding value for
terrestrial arthropods.
It is interesting to compare these figures with mass-

specific metabolic rates of mammalian brains and plant
leaves. The mean value for five mammals with available
in vivo estimates (Mink et al., 1981) is bbrain ¼ bopt 	

10:5Wkg�1 (range from 7.7 to 17.7Wkg�1). For plants,
Reich et al. (1998) collected data on mass-specific rates b

of dark respiration of leaves in vascular plants from
different geographic regions in the USA and Venezuela.
Using species descriptions we matched the reported b

values with characteristic maximum height H for 60
plant species studied by Reich et al. (1998). It appeared
that at 25 1C leaves respire at a rate of 2.2Wkg�1 in
conifers (mean H�35m), 5.8Wkg�1 in broad-leaved
shrubs and trees (H�10m) and 12Wkg�1 in forbs
(H�0:6m). Seedlings of 12 Chilean rainforest trees
(mean actual dry mass 11 g, mean maximum species
height 27m) respired at a rate of 4.2Wkg�1 (Lusk and
del Poso, 2002).
These estimates of bopt are summarized in Table 3.

Despite dramatic differences in apparent body size (over
five orders of magnitude in linear size) and biology
(arthropods, mammals, plants), the values of mass-
specific metabolic rates displayed by most species are
remarkably similar to each other. Additionally, compar-
ison of standard mass-specific metabolic rates of
eukaryotic unicells (205 observations for 50 species),
insects (402 species) and mammals (626 species) has
shown that in all the three taxa the majority of measured
mass-specific metabolic rates are confined between 1 and
10Wkg�1 (Makarieva et al., 2005).
Referring to the fact that in inter-specific comparisons

the catalytic activity of proteins appears largely inde-
pendent of preferred temperature, Clarke and Fraser
(2004) wrote that life has overcome the tyranny of
Boltzmann’s law. Our results suggest that life has
similarly worked to overcome the size-related metabolic
constraints imposed by the laws of physics and
chemistry. Living matter appears to be able to function
at its own preferred rhythm, whose quantitative
characteristics thus acquire fundamental biological
importance and demand further exploration.
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