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The nature of scaling between the organismal
basal metabolic rate B and its body mass M,
BpMa, is currently an important focus of
debates in theoretical biology (Whitfield, 2001).
For decades, it has been widely accepted that
a¼ 3/4 for virtually all groups of organisms
(Hemmingsen, 1960; Kleiber, 1961). A novel
approach developed by West, Brown & Enquist
(1997) (WBE) explains the value of a¼ 3/4
(instead of 2/3 that is to be expected from basic
dimensional considerations) by noting the frac-
tal-like space-filling structure of networks that
transport materials within living bodies.

However, the agreement about the ubiquity of
a¼ 3/4 in the living world has recently been
seriously challenged by extensive analyses of
data unavailable at the time of adopting the ‘‘3/4
rule’’. Dodds et al. (2001) showed that a¼ 0.67
for 357 mammalian species with mass less than
10 kg and a¼ 0.71 for the total of 391 species
studied by Heusner (1991), while for birds
a¼ 0.66 for the 398 species studied by Bennett
& Harvey (1987). For unicellular organisms, a
re-analysis of Hemmingsen’s (1960) data for 17
species by Prothero (1986) showed that a varies
from 0.60 to 0.75 depending on which taxonomic
groups are considered. Similarly, based on 554
observations for 108 species of Protozoa, Vladi-
mirova & Zotin (1985) reported values of a from
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0.66 to 0.86 for different taxonomic groups, with
no obvious clustering around any common
value. The evidence from plants consistently in
favor of the ‘‘3/4 rule’’ was also reported by
WBE and their collaborator (Enquist et al.,
1998, 1999; West et al., 1999a; Enquist & Niklas,
2001, 2002).

In this letter, we show that the major
dependencies of plant energetics on body size
can be accounted for by simple biological and
physical regularities that characterize the pri-
mary process of energy consumption by an
organism from its external environment, rather
than the transport of materials on the fractal-like
networks within a living body, which is the heart
of the WBE approach. Using the same regula-
rities, we explain the observed growth of a in
large mammals and the absence of similar
deviations from a¼ 2/3 in birds.

The crucial feature of organismal energetics is
that the energy is consumed from the environ-
ment via some part of body surface S, while it is
spent within body volume V. If the flux of energy
through unit body surface area, f, is constant,
then the metabolic rate per unit volume, b� f S/

V, decreases with growing linear body size l as
bples2ev ; where espeV are the scaling exponents
for body surface and volume, Sples and Vplev ;
respectively. In the case of geometric similarity
es¼ 2, eV¼ 3, and bpl�1.

It is natural to expect that there exists a certain
minimum value bmin, which is needed to keep the
living matter alive, i.e. to support biochemical
r 2002 Elsevier Science Ltd. All rights reserved.
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processes that at least counteract the sponta-
neous degradation of the highly organized state
of life. At fixed f, the value of bmin determines
the maximum size that the organism can attain.
There is evidence that the value of bmin is
universal for various taxonomic groups of
organisms with different f values (Gorshkov,
1981).

Plants exist due to consumption of solar
energy, the mean annual flux of which,
I(Wm�2), is determined by latitude. At a fixed
value of efficiency Z of assimilation of solar
energy by the plant, the flux of energy fp

assimilated by the plant per unit ground area is
constant

fp ¼ ZI : ð1Þ

We now introduce the effective vertical size le
equal to the thickness of the layer which forms
if all the metabolically active mass of the plant
is flattened on the area of projection of the plant
on the ground surface. Woody plants are
predominantly composed of dead, metabolically
inactive mechanical tissues. This property of
trees is widely used in dendrochronology and
climatic studies [e.g. the discovery of Suess-effect
(Suess, 1955)]. Metabolically active parts of trees
(leaves mostly) account for no more than 1–5%
of the total plant mass (Larcher, 1980). Thus, the
characteristic values of le for plants never exceed
several millimeters. Effective size le corresponds
to the commonly used value of leaf area index, d

(dimensionless) and can be estimated as le¼ dh,
where h is the leaf’s metabolic thickness
(Charles-Edwards, 1981).

As the effective size le grows, the metabolic
rate per unit metabolically active volume, b,
decreases inversely and proportionally to le. This
is because the amount of solar energy available
per unit ground area does not change, while it is
spent within a larger metabolically active vo-
lume. As soon as the minimum possible value
bmin is reached, the vertical growth is stopped at

lemax ¼ fp=bmin ¼ ZI=bmin: ð2Þ

Plants convert the energy of solar photons
into the energy of organic molecules that are
synthesized from inorganic ones. Inorganic and
organic molecules must move to and from the
locality where photosynthesis takes place. Such
a highly organized molecular transport is main-
tained by a complex network of biochemical
reactions within the plant. Thus, the efficiency
Z of assimilation of solar energy by the plant
should exponentially depend on ambient tem-
perature, Zpe�E/kT, where E (energy dimension)
is an energy activation constant characterizing
on average these reactions. For relative small
changes of temperature,T¼T0+t, t5T0, we
have e�E=kT ¼ C1e

C2t; where C1 � e�E=kT0 and
C2 � E=kT2

0 :
On average, the air temperature in the tropo-

sphere drops with elevation at a constant rate,
T(H)¼T0–GH, where GB6.6� 10�3Km�1. It
follows therefore from eqn (2) that at I¼ const
(i.e. at the same latitude) the leaf area index d,
proportional to le max, should drop exponentially
with elevation H:

dpC1e
�C2t ¼ C1e

�C2GH

or

ln d ¼ C �
E

kT2
0

GH; ð3Þ

where C is a constant. Not making any claims
for completeness of this analysis, we plotted the
log-transformed d values for five types of the
Alpine mountains ecosystems located at differ-
ent elevations from 1500 to 3000m (Vareschi,
1951; Larcher, 1980). As is clear from Fig. 1,
the data are very well approximated by a
linear semi-log curve ln d¼ 6.5–2.5�
10�3m�1H(r2¼ 0.958,Po0.005), which corre-
sponds to the predicted exponential relationship
between d and H in eqn (3).

Combining this result and eqn (3) and taking
the average temperature of the growing season
at H¼ 1600m in the Alpine mountains to be
about T0B288K(151C), we obtain that E/
kB[2.5� 10�3m�1� (288K)2]/6.6� 10�3Km�1

¼ 3� 104K. The obtained value is twice the
upper limit of characteristic energy activation
constants (EmB1.2 eV, Em/kB1.5� 104K) re-
ported for metabolic reactions in various plants
and animals (Gillooly et al., 2001). Although it is
possibly caused by the limited number of data,
the difference between Em and E is not surpris-
ing. The value of E/kB3� 104K characterizes



Fig. 1. Leaf area index d vs. elevation H (m) for Alpine
ecosystems above 1500m. Note that in the lower tropo-
sphere the air temperature in mountainous regions is
substantially homogenized by vertical convective heat
fluxes. Accordingly, there is no significant change in the
leaf area index in ecosystems below 1500m, where
dBdmaxB10, irrespective of ecosystem woodiness (i.e. same
for forests and meadows) (Larcher, 1980).
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biochemical reactions responsible for conversion
of solar energy into biochemical energy, i.e., a
process of organic synthesis unique to green
plants. By contrast, Em describes metabolic
spending of the accumulated biochemical energy
in the course of the organism’s functioning, i.e.
decomposition of the organic matter occurring
in all living organisms.

It is to be expected that the total biomass of
trees, mostly consisting of dead tissues and
having therefore nothing directly to do with
solar energy conversion, will be independent of
mean ambient temperature and, consequently,
elevation. Instead, it is likely to be determined by
mechanical conditions (e.g. absence of strong
winds, etc.). If these conditions are satisfied,
the woody metabolically inactive biomass may
remain constant up to very high elevations,
which is indeed observed (Enquist & Niklas,
2001).

As soon as the maximum effective vertical size
le max [see eqn (2)] is attained, any further
increase of the metabolically active mass Ma of
the individual plant may only proceed in the
horizontal direction. The growth thus becomes
essentially two dimensional (Li et al., 2000),
Maplh

2, where lh is a characteristic size of the
metabolically active parts of the plant in the
horizontal direction. For example, l may be
the round length of the thin cambium layer,
which is equal to pD, where D is the stem
diameter, so that lhpD. A good approximation
of Ma for woody plants is the leaf mass,
MlBMa. We have therefore MlpD2 in full
agreement with observations (Enquist & Niklas,
2002). The two dimensionality of the growth of
Ma should be observed for sufficiently adult
plants that have attained or approached the
maximum effective size le max (note again that le
max can be many orders of magnitude smaller
than the visible height of the plant). At the very
early stages of ontogeny, when le5le max,
nothing prevents the growth of Ma from being
fully three dimensional, Mapl3. In accordance
with this prediction, the data of Enquist &
Niklas (2002), that verify MlpD2, are obtained
for well-grown plants, for which stem diameter
could be measured at breast height. This
prediction also indicates that the youngest plants
should not fit the predictions of the WBE
approach, which the authors themselves ad-
mitted as well.

There are other important patterns that are
interpreted as unique predictions of the WBE
approach, e.g. that the plant productivity per
unit area does not depend on plant size (Enquist
et al., 1998). This pattern is immediately
retrieved from eqn (1). The flux of solar
radiation I being determined by latitude and
the efficiency Z of solar energy assimilation being
determined by temperature and biochemical
properties of the plant tissues directly interacting
with light, the energy uptake fp by the plants per
unit ground area is constant, which ensures
constant, size-independent productivity. Indivi-
dual plant size l never enters the derivation of
this statement, instead of being cancelled at the
final stage of rather extensive l-dependent
derivations, as suggested by Enquist et al.
(1998). Moreover, this statement is in no way a
consequence of BpMa for any values of a.

Another statement claimed by the WBE
approach is that the growth rate of plants, dM/

dt, is proportional to the second power of stem
diameter D and is independent of wood density
(Enquist et al., 1999). Taking into account that,
as shown above, the energy uptake fp of plants
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per unit ground area is constant, we immediately
note that the total metabolic rate of individual
plant, B, is proportional to the plant projection
area on the ground surface. This, in its turn,
is proportional to the second power of the
characteristic linear plant size in the horizontal
direction, e.g. stem diameter, as discussed above.
We thus have BpD2 and dM/dtpBpD2.

Again, we have obtained these results without
involving the knowledge about transport of
materials within the plant. By definition, the
dead, metabolically inactive part of plant mass,
Mi, which in woody plants approximates total
mass M, does not participate in energy con-
sumption. In this sense, consideration of plant
metabolism B per total plant mass MBMi is
the same biologically meaningless as would be a
consideration of mammalian metabolism per
metabolically inactive body parts (hair, claws,
antlers, etc.) or calculation of the metabolic rate
in birds per mass of their nests.

It seems justified to expect that a successful
approach to description of bioenergetics should
be based on, and start from, the consideration of
the primary process of energy assimilation by
an organism, rather than from the secondary
process of material transport, which occurs if
only the energy is already available. In the case
of plants, the priority of energy consumption
over transport of biogens is especially vivid from
the fact that while plant communities are able
to sequester the needed biogens themselves, they
are absolutely unable to change the incoming
flux of solar energy, to which they have therefore
to fit all their other characteristics, including
material transport.

So far we have predicted the exponential
decrease of leaf area index with elevation and
explained MlpD2 for adult plants, dM/dtpD2

and the independence of plant productivity from
plant size using the two basic principles:
constancy of (solar) energy flux per unit
(ground) surface area and the existence of a
minimum value of the volume-specific metabolic
rate bmin ensuring the living state of life. Using
the same two principles it is possible to explain
the observed patterns of the metabolic rate
dependence on body size in mammals and birds.

Homeothermic organisms maintain constant
body temperature, approximately equal for all
species. Therefore, homeothermic animals, same
as plants, but for a different reason, can be on
average characterized by a constant flux of
energy fh through unit body surface area. In
the case of geometric similarity, the volume-
specific metabolic rate bplm, where m¼ –1.
Assuming VpM (in this sense V and M are
interchangeable in the allometric analysis), this
corresponds to BpM2/3, as far as

b � fhS=Vplm;Vpl3;

B � bVpMa; a ¼ ðmþ 3Þ=3:
ð4Þ

With increasing body size, b approaches the
minimum possible value bmin, which determines
the critical body size lcr¼ fh/bmin. Without
changing the body geometry, it is impossible to
design homeothermic organisms with body size
l4lcr to cope with the overheating problem. The
amount of energy produced by the organism is
bminVpl3, while the amount of lost energy is
fhSpl2, i.e. it grows more slowly. Thus, in the
limiting case of b¼ bmin¼ const, in order to
avoid overheating, the organisms larger than lcr

must have the maximum possible scaling SpV

(Dodds et al., 2001), which corresponds to
mmax¼ 0 and amax¼ 1 from eqn (4).

In reality, the change of scaling between S and
V may occur more smoothly. As body size
approaches the critical value lcr, the decrease of
b slows down, while the ratio S/V in units of l

starts to grow. This corresponds to the increase
of m from –1 towards 0 and a from 2/3 towards 1
in large animals. Biologically, this is manifested
as the appearance of ‘‘surface-rich’’ parts of
body in large animals (e.g. ears of elephants,
neck of giraffes, etc.). Economos (1982) found
that, indeed, the relationship between body mass
and body size in mammals is different for the
larger as compared to the smaller ones. He
identified 20 kg as the breakpoint of scaling.

We enlarged the dataset of Heusner (1991) by
adding several data points for the largest
mammals. In Fig. 2 we plotted the relationship
between y� log10b and x� log10l. For 362
mammalian species with mass less than 20 kg
(xp1.43) we have the following regression
line:10 y1(x)¼�1.58–1.01x, r2¼ 0.77, po10�5.
That is, m1¼�1.0170.03 (S.D.) and a1¼ 0.66,
see eqn (4). Assuming that the curve b(l ) in



Fig. 2. Mass-specific metabolic rate b of mammals (original units in Wg�1) vs. body size l, defined here as the 1/3 power
of body mass (original units in g), log10l�1/3log10M. Most data for basal metabolic rate are taken from Heusner (1991).
Additional data (M420 kg): Loxodonta africana (Langman et al.,1995) Alces alces (Renecker & Hudson, 1985); Halichoerus
grypus, Zalophus californianus, Balaenoptera acutorostrata (Hind & Gurney, 1997).
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mammals is continuous, we then find the linear
approximation of the 34 data points for the
largest mammalian species in the following form:
y2(x)¼ y1(1.43)+m2(x–1.43). That is, we demand
that y2(x) coincides with y1(x) at the breakpoint
x¼ 1.43. Such a regression (with only one free
parameter m2) yields m2¼�0.0170.15, which
corresponds to a2¼ 1.00 from eqn (4), in full
agreement with the limiting values of m and a
predicted above. Additionally, based on analysis
of basal metabolic rates of 16 phocid seals with
M430 kg (specific data points are not available,
but, judging by M values, they are unlikely to
overlap with the data of Heusner, 1991, Lavigne
et al. (1987) also reported a significantly elevated
value of a¼ 0.87 (r2¼ 0.81), which corresponds
to m¼ �0.39 and yL¼�2.32–0.39x (see Fig. 2).
In studying large marine mammals, Lavigne et al.
(1987) did not have to account for the continuity
of b(l ) in the whole class of mammals, which
quite expectedly resulted in a departure of their a
and m values from amax and mmax.

The maximum body masses attained in birds
are at least two orders of magnitude lower than
those of the largest mammals. Thus, birds never
go significantly beyond the critical body size
for homeothermic animals lcr, after which the
scaling exponents a and m start to grow
conspicuously. That is why the basic rule a¼ 2/
3 (m¼ �1) is fully applicable to birds throughout
the whole range of their body sizes (Bennett &
Harvey, 1987; Dodds et al., 2001).

The obtained high uncertainty range of
m2¼�0.0170.15 in the above analyses is not
surprising. One source of uncertainty is that in
Fig. 2 we pool together the data for large
animals living in environments with different
heat conductivity (i.e. water vs. air) [cf. the high
correlation coefficient r2¼ 81 found by Lavigne
et al. (1987) for phocid sealsFaquatic animals
only]. Second, despite expecting that m increases
as the size of large mammals grows beyond lcr,
we approximated the dependence between b and
l by a log–log linear curve, thus presuming the
constancy of m2.

Moreover, it is likely that at l4lcr the
relationship between b and l is no longer
described by the allometric power law. Devia-
tions from the power law are to be expected any
time when there appears a fixed dimensional
constant, in our caseFbmin and lcr. Power law
becomes the single possible one only for the
problems lacking a characteristic scale. Indeed,
in such a case the only way to establish a
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dependence between any two variables, a and l,
is to study the relation between their relative
increments da/a and dl/l, which corresponds to a
functional dependence between logarithms of
a and l (Gorshkov, 1995, p. 38). The simplest
case of direct proportionality between the
logarithms results in the power law, apla. By
contrast, if there is a fixed characteristic scale l0,
the relation between a and l can be arbitrary, for
example, apexp(l/l0), apsin(l/l0), etc., with no
preference for the power law. In this light, the 3/
4 power dependence cannot be a mathematical
consequence of the basic WBE assumption that
there exists a characteristic linear scale l0
common to the design of all organisms (West
et al., 1999b).

To sum up, we used two fundamental
biological and physical principles (constancy of
energy flux per unit surface area and the
existence of minimal levels of the volume-specific
metabolic rate for supporting life) to derive or
explain most, if not all, of results on metabolic
rate dependence on body sizes of animals and
plants, which were originally claimed by the
WBE approach. In addition, we also predicted
and explained the exponential decrease of leaf
area index with elevation, the change of animal
body geometry and the breakpoint of the
allometric scaling. Since the process of energy

consumption by an organism from the external
environment is much more fundamental than the
transport of matter in a living body, our
approach should be more general and robust.
We agree completely with Heusner (1991), who
stressed that it is not the scaling exponent (a or
m) that is of primary theoretical interest, but the
‘‘location of the metabolic regression line in the
mass/power plane’’. This location is determined
by the characteristic values of the energy flux f
through body surface. It may well be the case
that in the course of evolution life invented but a
limited number of ways how to uptake the
energy from the environment. By their f values,
immobile organisms will be principally different
from those capable of active locomotion, home-
othermic from poikilothermic, etc. (Gorshkov,
1995; Gorshkov et al., 2000). Plotting the whole
living world in the log–log transformed b/l plane
(such as Fig. 2), investigating the resulting
metabolic groupings of organisms and identify-
ing the universal metabolic characteristics of life
(optimum, minimum and maximum values of b)
should be a fascinating scientific endeavor.

BL sincerely thanks J. H. Brown, E. L. Charnov
and G. B. West for various, very helpful discussions
on this subject. This work was partially supported by
Russian Foundation for Fundamental Research and
US National Science Foundation.
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