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Summary

1.

 

Mass-specific metabolic rates of 173 animal species under various conditions of pro-
longed food deprivation (aestivation, hibernation, sit-and-wait existence) and/or living
at temperatures near the freezing point of water were analysed.

 

2.

 

These minimum life-supporting metabolic rates are independent of body mass over
a nearly 80-million-fold body mass range and independent of temperature over a range
of 

 

−

 

1·7 to 30 

 

°

 

C, with a mean value of 0·1 W kg

 

−

 

1

 

 and 95% CI from 0·02 to 0·67 W kg

 

−

 

1

 

.

 

3.

 

Additionally, 66 measurements of anoxic metabolic rates in 32 species capable of
surviving at least 1 h of anoxia were analysed. While similarly mass-independent,
anoxic metabolic rates are significantly more widely scattered (1200-fold 95% CI); they
are on average one order of magnitude lower than during normoxia and depend on
temperature with 

 

Q

 

10

 

 = 2·8.

 

4.

 

Energy losses at the time of 50% mortality during anoxia are 30–300 times smaller than the
energy losses tolerated by normoxic organisms in the various energy-saving regimes studied.

 

5.

 

These principal differences form the basis for proposing two alternative strategies
by which organisms survive environmental stress: the regime of 

 

abandoned metabolic
control

 

 (‘slow death’), when, as in anoxic obligate aerobes, measured rates of energy dis-
sipation can predominantly reflect chaotic processes of tissue degradation rather than
meaningful biochemical reactions; and the regime of 

 

minimum metabolic control

 

, when
biochemical order is sustained at the expense of ordered metabolic reactions. Death or
survival in the regime of abandoned metabolic control is dictated by the amount of
accumulated biochemical damage and not by the available energy resources, as it is in
the regime of minimum metabolic control.
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Introduction

 

According to the second law of thermodynamics, the
highly organized non-equilibrium state of life is subject
to spontaneous degradation. Living organisms must
invest energy to cope with continually accumulating
disorder: for example, to replace degrading enzyme
macromolecules or to maintain ion gradients across
membranes (Hand & Hardewig 1996). The necessity
of preserving existing biochemical order dictates the
minimum energy requirements of the organism.

Reduced metabolic rates are characteristic of organ-
isms exposed to environmental stress. Two different
strategies of coping with accumulating disorder under

extreme conditions can be envisaged. The organism
can modify its cellular structures to maximally protect
them against degradation. Once this is done, it can
switch off  virtually all metabolic processes until the
adverse environmental conditions pass. The drawback
of this strategy, which can be called the strategy of

 

abandoned metabolic control

 

, is that, no matter how
low, the rate of spontaneous degradation of cell struc-
tures is never zero. In the absence of metabolic control
from the organism’s side, its death will follow as soon
as the amount of damage accumulated in its tissues
passes the critical threshold.

Alternatively, the organism can attempt to survive
environmental stress, such as prolonged food depriva-
tion, by continually sustaining its order and, hence,
maintaining a low but non-zero metabolic rate. In this
strategy, which can be termed the strategy of 

 

minimum
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metabolic control

 

, survival time will be determined by
the amount of energy available for the organism. The
word ‘minimum’ refers to the idea that, for the sake of
energy conservation, the rate of controlled metabolism
reaches its minimum possible value sufficient for the
maintenance of biochemical homeostasis.

In other words, measurements of what is uniformly
called ‘metabolic rate’ can either reflect organismal
energy expenditure on the maintenance of order and
on performing other meaningful functions (true meta-
bolic rate), or they can represent the rate at which
organismal cellular structures spontaneously degrade.
Previously, this conceptual duality in the interpreta-
tion of measured rates of energy dissipation by living
organisms has not been explicitly recognized.

In the regime of minimum metabolic control, when
the organism continually repairs the breakdown of
cellular structures at the expense of internal energy
resources, it should be able to tolerate much larger
energy losses per unit body mass than in the regime of
abandoned metabolic control. This is because such
energy losses are non-random and occur in tissues
specifically designed for this purpose (e.g. lipid reserves
in hibernating mammals) without threatening the
integrity of the organism. In the case of abandoned
metabolic control, when the measured energy loss is
due to unordered, chaotic biochemical processes, death
of the organism, caused by critical damage, can be un-
related to, and occur well before, the depletion of the
internal energy resources.

In the present paper these ideas are explored quan-
titatively. We compare absolute values of mass-specific
metabolic rates of metabolically depressed organisms
across different taxa, body mass intervals and environ-
mental conditions. Previous analyses have focused on
particular taxa (Storey 1997; Withers, Pedler & Guppy
1998; Geiser 2004) and particular types of metabolic
depression (Storey 1996, 2002; Geiser 2004), with
interspecific comparisons predominantly made in terms
of relative rather than absolute changes in metabolic
rate, and on a whole-body rather than a mass-specific
basis (Hand & Hardewig 1996; Guppy & Withers
1999).

 

Methods

 

In the search for minimum life-supporting metabolic
rates we focused on two conditions: prolonged food
deprivation and low ambient temperatures. Metabolic
rates reported in terms of oxygen consumption were
converted to energetic units assuming 20 J per ml O

 

2

 

.
Only those experimental temperatures that fell within
the natural temperature range experienced by the
species in the physiological state of interest were used.
Where several literature sources for the same species
were available, the one reporting the lowest value was
taken. An annotated list of  the data is presented
in the Appendix, which can be downloaded from
www.biotic-regulation.pl.ru/datasets.htm or obtained

from the authors on request. However, an evaluation
of the patterns that were found is more readily made
with an understanding of the groups of organisms
used, and their physiological states.

To facilitate analysis, the 173 species were divided
into seven groups (Table 1). Among endothermic ani-
mals, the lowest metabolic rates are observed in hiber-
nating species (Geiser 2004). Hibernation can last for
several months, when the animals typically do not have
access to energy resources other than those stored in
their bodies (McNab 2002). Minimum metabolic rates
reported for 42 hibernating species (41 mammals and
1 bird) by Geiser (2004) formed Group I ‘hibernating
endotherms’ (Table 1).

Another group of animals known for their ability of
surviving for months without food is represented by
arthropod sit-and-wait strategists, ticks and scorpions.
Lighton & Fielden (1995) measured standard meta-
bolic rates of eight species of North American ticks
(body mass 3·2–70·4 mg); Lighton 

 

et al

 

. (2001) ana-
lysed standard metabolic rates of nine species of desert
scorpions (0·12–15 g). In both cases, at 25 

 

°

 

C standard
metabolic rates of these sit-and-wait strategists are an
order of magnitude lower than those of other similar-
sized arthropods. These data, together with one addi-
tional measurement of standard metabolic rate of the
Antarctic Tick 

 

Ixodes uriae

 

 (7 mg, 5 

 

°

 

C) (Lee & Baust
1982), were included in the present analysis.

Prolonged starvation is also common in ground-
water ecosystems, where autotrophic production is lack-
ing and nutrient supply is highly sporadic. Metabolic
rates of three subterranean aquatic crustaceans (12–
93 mg, 11 

 

°

 

C) capable of surviving more than 1 year
without food, and experimentally starved for 180 days
(Hervant 

 

et al

 

. 1997), were combined with the 18 tick
and scorpion data points and 1 aestivating Australian
arid-zone crab, 

 

Holthuisana transversa

 

 (

 

∼

 

10 g, 25 

 

°

 

C)
(MacMillen & Greenaway 1978), to form Group II
called ‘arthropod sit-and-wait strategists’. An inherent
feature of this group is relatively high ambient temper-
ature (mean 22 

 

°

 

C).
Polar aquatic arthropods not only have to exist at

low temperatures, but also often experience seasonal
food shortages caused by declining primary productiv-
ity during the months of prevailing darkness and
extensive sea-ice cover. These species are therefore
appropriate for studying minimum life-supporting
energetic requirements. Marine copepods in both the
Arctic and the Antarctic can survive winter food short-
ages by reducing their metabolic rates, with complete
cessation of feeding and retreat to ocean depths in
some species (Auel, Klages & Werner 2003; Ikeda,
Sano & Yamaguchi 2004). We included metabolic rate
data of three overwintering, metabolically depressed
copepods from the Northern hemisphere, 

 

Neocalanus
cristatus

 

 (Ikeda 

 

et al

 

. 2004), 

 

Calanus hyperboreus

 

 (Auel

 

et al

 

. 2003) and 

 

C. finmarchicus

 

 (Ingvarsdóttir 

 

et al

 

.
1999), and minimum metabolic rates recorded for
seven species of postoverwintering Antarctic copepods
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at 0 °C (Kawall, Torres & Geiger 2001), a total of 10
data points corresponding to a body mass range of
1·2–23 mg. Metabolic rate values taken from the study
of Kawall et al. (2001) represent mean (averaged across
individuals) minimum oxygen consumption rates recorded
in 30-min intervals in several individuals of a given
species that were monitored for 10–20 h each. These
minimum values, presumably approaching standard
metabolic rate of the species studied, are several times
lower than their routine metabolic rates, similar to the
situation found in coldwater fish (Steffensen 2002).
Group III ‘coldwater arthropods’, totalling 15 spe-
cies, was completed with metabolic rates of a 5-week
starved Antarctic isopod Glyptonotus antarcticus (33 g)
(Robertson et al. 2001), the scavenging Antarctic
amphipod Waldeckia obesa (0·6 g) starved for 64 days
(Chapelle, Peck & Clarke 1994), a 1-month starved,
Arctic amphipod Themisto libellula (50 mg) (Percy
1993) and two Arctic decapods Sclerocrangon ferox
and Sabinea septemcarinata (∼10 g) (Schmid 1996).
Mean temperature for Group III was 0·3 °C (Table 1).

The second set of minimum metabolic rates com-
prised ectothermic vertebrates and non-arthropod
invertebrates. The extensive compilation of standard
and routine fish metabolic rates presented by Clarke
& Johnston (1999) includes 25 coldwater species (ex-
perimental temperature from −1·7 to 1 °C). Minimum
metabolic rates recorded for each species (these corre-
spond to the largest individuals measured, body mass
range from 2 g to over 2 kg) formed the bulk of Group
IV ‘coldwater ectothermic vertebrates’. Additionally,
this group comprised several hibernating ectotherms,
the turtle Chelydra serpentina (3·5 kg, 10 °C), the
snake Thamnopsis sirtalits (63 g, 2 °C), the frog Rana
temporaria (25 g, 3 °C) (Gatten 1978; Costanzo 1985;
Boutilier et al. 1997), three deepwater sit-and-wait
fishes (28–100 g, 5 °C) (Cowles & Childress 1995) and
one blind cave-dwelling salamander Proteus anguinus
(17 g, 12·8 °C) adapted to prolonged periods of food
deprivation (Hervant, Mathieu & Durand 2001).
Group IV totalled 32 species with a mean temperature
of 0·9 °C.

Metabolic depression is characteristic of aestivating
vertebrates surviving seasonal drought at high temper-
atures. Metabolic rates of 22 aestivating vertebrates
listed by Guppy & Withers (1999) in their Table 6 (3
fish species, 14 amphibians and 5 reptiles, body mass
range from 1 g to 6·5 kg, temperature range from 15 to
30 °C), and the lizard Tupinambis merianae (90 g,
17 °C) (de Souza et al. 2004) were included in the
present analysis to form Group V ‘aestivating ecto-
thermic vertebrates’.

Group VI ‘coldwater non-arthropod invertebrates’
comprised 28 polar and subpolar species, including
8 bivalve species, 5 gastropods, 1 brachiopod, 1 poly-
chaete worm, 7 sponges and 6 echinoderms (Houlihan
& Allan 1982; Davenport 1988; Peck 1989; Schmidt
1996; Witte & Graf 1996; Peck, Brockington & Brey
1997; Pörtner et al. 1999; Kowalke 2000; Brockington

& Peck 2001; Gatti et al. 2002; Peck, Pörtner & Hardewig
2002; Sommer & Pörtner 2002; Harper & Peck 2003;
Stead & Thompson 2003). In this group metabolic
rates were almost exclusively reported on a dry mass
(DM) or ash-free dry mass (AFDM) basis, apparently
because of  high variability of  water and inorganic
matter content in many species. In vertebrates and
gastropods the amount of ash (inorganic matter) in
dry tissue mass is usually low, so the ratios of dry tissue
mass to wet mass and ash-free dry mass to wet mass
are roughly similar. In coldwater fish, AFDM amounts
to 10–30% of  wet mass (Torres & Somero 1988); in
gastropods it constitutes about 20–25% of wet tissue
mass (Penney 2002), a percentage common for many
vertebrates. To allow for meaningful comparisons
with vertebrates and aestivating invertebrates (mostly
gastropods), metabolic rates reported per unit DM or
AFDM in group VI species were standardized to 80%
water content by dividing by a factor of five. Con-
versely, body masses reported as DM or AFDM were
converted to ‘standard’ tissue mass by multiplying by
a factor of five.

Among non-arthropod invertebrates, gastropod
molluscs are known for their ability to survive long
periods of drought in a metabolically depressed state.
Metabolic rates of 10 aestivating snail species (shell-
free body mass 0·1–60 g, temperature 20–30 °C) and 1
annelid worm (Coles 1968, 1969; Schmidt-Nielsen,
Taylor & Shkolnik 1971; Burky, Pacheco & Pereyra
1972; Horne 1973; Herreid 1977; Riddle 1977; Abe &
Buck 1985; Rees & Hand 1990; Pedler et al. 1996;
Withers et al. 1998) formed Group VII ‘aestivating
non-arthropod invertebrates’. In molluscs, metabolic
rates were expressed per unit shell-free (i.e. tissue)
mass.

Anoxic metabolic rates of 32 species capable of sur-
viving at least 1 h of anoxia (3 crustacean species, 5
insects, 11 bivalves, 2 gastropods, 2 fish, 1 frog, 1 turtle
and 7 worms) with body mass ranging from approxi-
mately 1 µg to nearly 1 kg (a billion-fold range) were
collated. There were 66 measurements in total, corre-
sponding to different developmental stages, tempera-
tures and periods of anoxia. Where not determined by
direct calorimetry, anoxic metabolic rates were calcu-
lated from the rate of lactate accumulation assuming
120 J per 1 mmol lactate (Herbert & Jackson 1985).

Results

:    
-     


Hibernating endotherms (Group I) at M = 100 g and
T = 8·6 °C (mean body mass and temperature) have
essentially the same metabolic rate q = 0·21 W kg−1 as
ticks, scorpions and other arthropod sit-and-wait
strategists (Group II), q = 0·24 W kg−1, despite the
lower body mass and higher temperature of the latter
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group, M = 0·13 g and T = 22 °C (Table 1). Had min-
imum mass-specific metabolic rate depended on body
mass and temperature,

eqn 1

typical values of Q10 = 2 and b ≈ −0·3 would have pro-
duced an almost 20-fold difference in q between the
two groups. Within the ticks, the Antarctic Ixodes
uriae (M = 7·4 mg, adult males, non-feeding stage) has
nearly the same metabolic rate at 5 °C, q = 0·22 W kg−1,
as similarly sized North American species at 25 °C,
e.g. Amblyomma cajenense with M = 7·5 mg and q =
0·26 W kg−1, in agreement with the proposed meta-
bolic cold adaptation in terrestrial arthropods
(Addo-Bediako, Chown & Gaston 2002). Coldwater
arthropods (Group III, M = 0·039 g, T = 0·3 °C) have
somewhat lower q (= 0·14 W kg−1) than terrestrial
arthropods and endotherms. However, the observed
1·7-fold difference between Groups II and III is less
than the 3·1-fold difference expected from eqn 1. The
1·5-fold ratio between the mean q-values of Groups I
and III differs greatly from the ratio of 0·17 predicted
from eqn 1, according to which the much heavier
endotherms should have lower q than the small
coldwater arthropods. The combined arthropod–
endotherm data set (Fig. 1a), containing 80 species
with body masses spanning more than seven orders
of magnitude, from about 1 mg fresh mass in the over-
wintering copepod Calanus finmarchicus to 80 kg in
the hibernating bear Ursus americanus, is character-
ized by q = 0·20 W kg−1 and 95% CI from 0·061 to
0·65 W kg−1.

Mass-specific metabolic rates in Groups IV–VII of
ectothermic vertebrates and non-arthropod inverte-
brates are consistently lower than in Groups I–III, but
remarkably similar to each other at 0·06–0·08 W kg−1

(Table 1). The ecological significance of this similarity
is readily illustrated by comparison of taxonomically
distinct and ecologically differentiated species. Thus,
the metabolic rate of the 4-kg Central African lungfish
Protopterus aethiops (0·028 W kg−1 at 30 °C) (Janssens
1964), which survives several months of drought by
burrowing into mud, is close to that of a small snail
Sphincterochila boissieri (shell-free mass 1·8 g, 25 °C,
0·020 W kg−1) aestivating in the Negev desert of Israel
(Schmidt-Nielsen et al. 1971), to that of the Antarctic
gastropod Trophon longstaffi (standardized shell-free
mass 2·8 g, 0 °C, 0·026 W kg−1), which feeds only a few
times a year (Harper & Peck 2003), and to that of the
deep-water sit-and-wait fish predator Melanocetus
johnsoni (100 g, 5 °C, 0·033 W kg−1) (Cowles & Childress
1995).

The frequency distribution of the log10-transformed
q-values from the combined Groups IV–VII (non-
arthropod invertebrates and ectothermic vertebrates),
with q = 0·071 W kg−1 is statistically different from
that of the combined Groups I–III (arthropods and
endotherms), with q = 0·20 W kg−1 at P < 10−7 (Fig. 2).

The difference between arthropod and non-arthropod
invertebrates (mostly represented by bivalves, sponges,
echinoderms) probably has to do with the largely
immobile, inactive lifestyle of the latter group com-
pared with actively moving arthropods. That is, tissues
normally accustomed to high levels of physiological
activity require more energy for their maintenance
even when metabolically depressed.

The three highest values displayed by group VI
coldwater invertebrates, 0·47–0·55 W kg−1 (Fig. 2b),
belong to the three deep-sea sponges from the Greenland-
Norwegian Sea (Witte & Graf  1996). These values
are more than 2·5 times higher than any of the others
in this group, including several other species of polar
sponges. Kowalke (2000) suggested that these high
values could be an artefact of the unnatural physio-
logical state of deep-sea sponges assessed at atmos-
pheric pressure. The biological significance of these

q Q MT T b  ,( )/( )∝ −
10

100 °C

Fig. 1. Minimum life-supporting mass-specific metabolic rates
q in various organisms. Boxes and circles denote vertebrates and
invertebrates, respectively. Open symbols refer to temperatures
≤ 5 °C, dotted symbols refer to temperatures > 5 °C and
< 15 °C, symbols with a + refer to temperatures = 15 °C.
Dashed lines denote 95% confidence intervals assuming a
log-normal distribution of q-values. (a) Hibernating endo-
therms, arthropod sit-and-wait strategists, coldwater arthro-
pods, i.e. groups I, II and III from Tables 1, n = 80 species.
(b) Coldwater fish and hibernating ectothermic vertebrates,
aestivating vertebrates, coldwater non-arthropod invertebrates,
aestivating non-arthropod invertebrates, i.e. groups IV, V, VI
and VII from Tables 1, n = 93 species.
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high values remains to be established. Although the
sponges studied by Witte & Graf (1996) (10–20 mg
AFDM) are among the smallest organisms in group
VI species and much smaller than the four sponges
studied elsewhere (1–4 g AFDM) (Kowalke 2000;
Gatti et al. 2002), an even smaller bivalve, Cyclocardia
astartoides (10·8 mg AFDM), at 0 °C has a metabolic
rate of 0·05 W kg−1 (Peck & Conway 2000; as cited by
Harper & Peck 2003), which is lower than the group
average.

The log–log regression of q on M is not significant
(P < 0·05) in any of the seven groups studied, with the
exception of Group I, where P = 0·047 is on the verge
of statistical significance, and Group VI, where this
dependence is solely due to the three sponges discussed
above (Table 1). For the total data set of 173 species, a
slight mass dependence at b = −0·05 (P = 0·003,
r2 = 0·05) is found, owing to the fact that Group I–III
animals, with higher q (= 0·020 W kg−1) are on average
somewhat smaller (M = 3·8 g) than Group IV–VI
animals with lower q (= 0·071 W kg−1, M = 15 g)
(Table 1).

:     

Anoxia represents a severe stress to obligate aerobes.
Much energy can be stored within the animal body to
support normal biochemical processes even in the later
absence of an external food supply. However, absence
of oxygen, which cannot be stored within the animal
body for any prolonged period, prohibits normal
biochemical and physiological functioning of obligate
aerobes. Many air-breathing species die after several
minutes of oxygen deprivation. For organisms tolerating
hours and days of anoxia it has been long known,
although never emphasized, that metabolic rates measured
during anoxia reflect processes of biochemical degra-
dation, such as tissue autolysis (Shick, de Zwaan & de
Bont 1983). Only recently has it been explicitly recog-
nized that anoxic existence can represent gradual
death rather than sustainable maintenance: the slower
the processes of degradation, the longer the survival
time (Knickerbocker & Lutz 2001; Milton, Manuel &
Lutz 2003). These observations, and the data that are
presented below, justify the application of the pro-
posed notion of abandoned metabolic control to
describe obligate aerobes under anoxic conditions.

The observed anoxic metabolic rate of 32 species is
widely scattered, from 4 × 10−5 W kg−1 after 5·6 years
of anoxia in embryos of Artemia fransciscana, the
champion of anoxic survival (Warner & Clegg 2001),
to 3 W kg−1 in larvae of the bivalve Crassostrea virginica
with a time to 50% mortality (LT50) of 11 h (Widdows,
Newell & Mann 1989) (Fig. 3). Even when these extreme
values pertaining to organisms with M << 1 mg are
excluded, the remaining 55 measurements for 31
species have a 1200-fold 95% CI compared with only
34-fold 95% CI in the 173 normoxic species in the
regime of minimum metabolic control (11-fold and 27-
fold in Groups I–III and IV–VII, respectively)
(Table 1). This wide scatter presumably reflects the
chaotic nature of anoxic metabolic rates, which are on
average about one order of magnitude lower than min-
imum metabolic rates in normoxia. Anoxic metabolic
rates do not depend on body mass (Table 1).

The second profound difference between normoxic
and anoxic metabolic rates is revealed by comparison
of energy losses tolerated by anoxic and normoxic
organisms. Energy losses of ticks starved for 1 year
and hibernating bears amount to 4300–20 000 kJ (kg
DM)−1 or 16 000–40 000 kJ (kg fat-free DM)−1 (data
from Lighton & Fielden 1995; Geiser 2004; Tinker,
Harlow & Beck 1998; details of calculations are pro-
vided in the Appendix). By contrast, mass-specific
energy losses, Ψ, tolerated by long-term anoxia survi-
vors at the LT50, are significantly lower. For example,
anoxic metabolic rates of the bivalves Arctica islandica
and Astarte borealis with LT50 values of 46 and 80 days
(Hand & Hardewig 1996) are 3 and 1·5 kJ (kg DM)−1

day−1, respectively (Oeschger 1990). This gives Ψ =
138 kJ (kg DM)−1 and Ψ = 120 kJ (kg DM)−1 for the
two species, respectively. These values are 30–300 times

Fig. 2. Frequency distribution of log10-transformed minimum
life-supporting mass-specific metabolic rates q in: (a) endo-
therms and arthropods (Groups I–III from Table 1) and
(b) ectothermic vertebrates and non-arthropod invertebrates
(Groups IV–VII from Table 1). Outliers: s aestivating
Tanzanian snail Bulinus nasutus (shell-free mass 0·1 g, 24 °C);
b Arctic bivalve Astarte montagui (ash-free dry mass 0·6 g,
0 °C); sp coldwater sponges from the Norwegian Sea (ash-
free dry mass 10–20 mg, −0·5 °C).
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lower than the above estimates of energy losses tolerated
by bears and ticks in the regime of minimum metabolic
control.

We analysed the dependence of LT50 and anoxic
mass-specific metabolic rates, qA, in species capable of
surviving more than 12 h of anoxia. Because anoxic
metabolic rate declines rapidly at the onset of anoxia,
to its characteristic low values (e.g. Herbert & Jackson
1985), only studies where metabolic rate had been esti-
mated during the time period not less than one-fifth of
the LT50 were used in the analysis. The low estimates
for Artemia fransiscana were excluded because these
are tentative estimates, rather than direct measurements
(Warner & Clegg 2001).

In the 17 species studied (20 observations) anoxic
metabolic rates are inversely proportional to LT50

(Fig. 4a). Thus, to survive LT50 ≈ 10k days in anoxia,
the organism must depress the mass-specific rate of
disorder accumulation to at least qA ≈ 10–k W (kg
DM)−1. One day, for example, can be survived at qA as
high as 1 W (kg DM)−1, while to survive for 100 days qA

cannot be higher than about 0·01 W (kg DM)−1. In
other words, the better an organism protects its tissues
against chaotic biochemical reactions, the longer it
will survive. For example, an Indian snail Pila virens
(8·5 g shell-free mass) can aestivate for nearly a year
in dry mud under anoxic conditions at 27 °C with
qA = 1·9 × 10−3 W (kg DM)−1 (Meenakshi 1957). When
placed in anoxic water, the same snail cannot survive
more than 4 days. The animal is apparently unable to
sufficiently protect its tissues against detrimental bio-
chemical processes, which, in this unprotected hydrated
state, occur at a much higher rate of  qA = 0·065 W
(kg DM)−1.

The lower limit of mass-specific energy loss during
the period of anoxia survival, estimated as:

Ψ = qA × LT50, eqn 2

is not dependent on survival time (Fig. 4b). Independent
of their metabolic rate, animals die after the cumulative
energetic yield of chaotic anoxic biochemical processes
has, on average, passed Ψ = 70 kJ (kg DM)−1.

If  qA represents the lowest metabolic rate observed
after prolonged periods of anoxia approaching LT50,
then the product Ψ = qA × LT50 can somewhat under-
estimate total energy loss during the entire period of
anoxia exposure. However, as far as the initial decline
in the rate of energy dissipation is typically rapid, total
anoxic energy loss will be of the same order of magnitude
as Ψ. For example, in the turtle Chrysemys picta, total
energy loss during 12 weeks of anoxia at 3 °C is approxi-
mately twice the value of qA × 12 weeks, where qA is the
lowest metabolic rate measured during the 12th week
(Herbert & Jackson 1985). On the other hand, if  qA is
measured before the rate of energy dissipation reaches its
minimum value, then Ψ, equation 2, can overestimate the
total anoxic energy loss. The wide scatter of Ψ-values
around the mean, Fig. 4(b), may reflect these inaccuracies.

Besides quantitative differences between normoxic and
anoxic energy losses (Fig. 4b), an important, expected,
distinction is the absence of correlation between long-term
anoxia survival and the internal store of energy (glycogen)
available for the organism. While under normoxic con-
ditions, long-term hibernators, such as bears, are known
for exceptional lipid stores. Species with extreme resistance
to anoxia, e.g. the bivalves Astarte borealis and Arctica
islandica, and the priapulid worm Halicryptus spinulosus,

Fig. 3. Mass-specific rates qA of energy dissipation by animals during various periods of anoxia. (a) Boxes, circles, triangles, up-
down triangles and bow-ties denote vertebrates, arthropods (insects and crustaceans), gastropods, bivalves and worms,
respectively. Asterisks denote the bivalve Crassostrea virginica developmental stages from larvae to adult organism and anoxia
periods from 3 to 15 h at 22–25 °C (Widdows et al. 1989; Stickle et al. 1989). Stars denote embryos of Artemia franciscana during
the following anoxia periods (counted downwards): 9 h, 6 days (Hand 1990), 1·5 h (Hontoria et al. 1993), 12 h, 1 month, 1·4,
2·5 and 5·6 years (Warner & Clegg 2001) at room temperature. Letters referring to groups of vertically arranged symbols denote
the following species and anoxia periods (counted downwards): t turtle Chrysemys picta bellii, 0·5, 3, 10 and 84 days at 20, 15,
10 and 3 °C, respectively (Herbert & Jackson 1985); s snail Pila virens, 3 days of anoxia in the active hydrated state and 6 months
of anoxic aestivation at 27 °C (Meenakshi 1957); pw priapulid worm Halicryptus spinulosus, 1, 2, 5, 10, 12 and 14 days at 10 °C
(Oeschger et al. 1992); b bivalves Pisidium spp., 14, 100 and 140 days; ow oligochaete worm Potamothrix hammoniensis, 14, 61
and 134 days; i aquatic insect larvae Chironomus anthracinus (Diptera), 5, 15 and 25 days (Hamburger et al. 2000). Dashed lines
are 95% CI of q-values for M > 1 mg assuming log-normal distribution. With one exception (see above), all values are for
temperatures from 10 to 30 °C. (b) Frequency distribution of log10-transformed qA values.
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have only modest glycogen stores: 5–10% of dry tissue
mass, as compared with less anoxia-tolerant species,
where it can be as high as 40% (Oeschger 1990). Con-
versely, death by anoxia can occur both at low and
high levels of  glycogen depletion. For example, the
oligochaete Potamothrix hammoniensis, with LT50 =
170 days, remains viable at glycogen levels of less than
1%, while larvae of the midge Chironomus anthracinus,
LT50 = 35 days, and the bivalves Pisidium spp.,
LT50 = 170 days, start dying while still containing 15%
and 6% glycogen per unit dry tissue mass, respectively
(Hamburger et al. 2000). Oeschger (1990) noted that it
is not the high glycogen content, but, essentially, the
reduction of metabolic rate that is a critical prerequisite
for long-term survival of anoxia.

  :  


Finally, an important distinction between anoxic and
normoxic metabolic rates lies in their temperature

(in)dependence. In the absence of a mass dependence,
one can write

eqn 3

where q0 is metabolic rate at a reference temperature
T0. Taking logarithms of both sides in eqn 3, one
obtains log10 q = a + b(T − T0), where a = log10 q0 and
the slope b of  the regression of log10 q on temperature
is equal to b = (log10 Q10)/10, so that Q10 = 1010b.

Most metabolic rates in both the normoxic and
anoxic data sets were measured at temperatures from
0 to 30 °C, so T0 = 15 °C (global mean surface temper-
ature) was chosen as the reference point. For anoxic
data, the four lowest values for A. franciscana were
excluded, as noted previously. For a few species, where

Fig. 4. Metabolic rate, energy loss and survival time in anoxia.
(a) Mass-specific rates qA of energy dissipation by organisms
capable of surviving more than half a day of anoxia. Regression
line log10 qA (W kg−1) = −0·041 − 1·0 log10 LT50 (days), where LT50

is the 50% survival time (P < 10−5, r2 = 0·86, n = 20). (b) Filled
circles: energy loss ψ (eqn 2) during anoxia; it is independent
of survival time; regression log10 Ψ = a + b log10 LT50 gave
a = 1·85 ± 0·12 (± 1 SE), b = 0·02 ± 0·09, P = 0·85, r2 = 0·002. Open
circles: normoxic energy losses of bears during hibernation
and ticks during prolonged starvation, see text for details.

3

q q Q T T  ,( )/( )= −
0 10

100 °C

Fig. 5. (a) Temperature-independence of minimum life-
supporting metabolic rates q; log10 q = a + b (T − T0), a = −0·91 ±
0·03 (±1 SE), b = 0·0046 ± 0·0028 (±1 SE), P = 0·10, r 2 = 0·02,
n = 173. (b) Temperature dependence of anoxic rates of
energy dissipation qA; log10 qA = a + b T − T0), a = −1·74 ±
0·12 (±1 SE), b = 0·044 ± 0·019 (± 1 SE), P = 0·023, r2 = 0·097,
n = 53.
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anoxic metabolic rates were measured at different tem-
peratures, the value at the lowest measured tempera-
ture was taken. The estimated slopes b (Fig. 5) allow
the estimation of normoxic Q10 as Q10 = 1·11 (95% CI
from 0·98 to 1·26) and anoxic Q10 as Q10 = 2·75 (95%
CI from 1·15 to 6·61). Minimum life-supporting meta-
bolic rates are practically independent of temperature
(Q10 = 1·11, P = 0·1), while anoxic rates of energy dis-
sipation show a significant temperature dependence
(Q10 = 2·8, P = 0·02). At Ψ = const (eqn 2), the
increase of qA with temperature brings about a propor-
tional decline in survival time LT50, a phenomenon
consistently detected in many species. For example, the
turtle Chrysemis picta survives 4–5 months in anoxia
at 3 °C and only half a day at 20 °C (Herbert & Jackson
1985); the polychaete worms Marenzelleria viridis and
Hediste versicolor (0·07 g) survive more than 10 days
of anoxia at 5 °C and no more than 2 days at 20 °C
(Fritzsche & von Oertzen 1995).

The observed temperature-independence of mini-
mum life-supporting metabolic rates does not have a
straightforward mechanistic explanation. Ion-pumping,
which supports trans-membrane ion gradients, accounts
for a considerable proportion of  the basal meta-
bolic rates of many organisms (Hand & Hardewig 1996;
Hulbert & Else 2000), and is preserved in many meta-
bolically depressed normoxic species (Guppy &
Withers 1999). The physicochemical process of spon-
taneous leakage of ions along concentration gradients
is not exponentially dependent on temperature, so that
energy expenditures spent on counteracting such leak-
age should also be relatively temperature-independent.
Singer et al. (1993) suggested that this could explain
why minimum life-supporting metabolic rates should
not depend on temperature. However, the problem
appears to be more fundamental when considered
within a broader framework, together with such phe-
nomena as the temperature-independence of the cata-
lytic activity of homologous proteins (Somero 1995),
and the temperature-independence of the rates of pro-
tein and RNA turnover (Marsh, Maxson & Manahan
2001) established in comparisons of  species adapted
to different ambient temperatures. These findings
provide support for the idea that life is able to function
at its own preferred optimum rhythm (Makarieva,
Gorshkov & Li 2005a,b,c) overriding various physi-
cochemical limitations such as, in this particular
example, Boltzmann’s temperature law (Clarke &
Fraser 2004), with biochemical restructuring during
the course of evolution. In the meantime, the typical
value of Q10 = 2·8 established for anoxia is consistent
with the interpretation of anoxic energy dissipation as
indicative of uncontrolled processes similar to bio-
chemical reactions occurring in vitro or in a dead body.

Discussion

We have argued in favour of  the existence of  two
metabolic regimes for survival of unfavourable environ-

mental conditions: the regime of abandoned metabolic
control and the regime of minimum metabolic control.
In the former regime, metabolic control is abandoned
in the sense that the on-going biochemical processes
are gradually undermining the initial biochemical and
physiological homeostasis of the organism, instead of
sustaining it. For example, continuous accumulation
of lactate in the blood and internal organs of the turtle
Chrysemis picta, hibernating under anoxic conditions,
ultimately leads to severe acidosis and death (Ultsch,
Hanley & Bauman 1985). Energy production in anoxic
turtles is proportional to the rate of lactate accumulation,
which means that at the organismal level, the rate of
heat dissipation by anoxic turtles effectively reflects the
rate at which the turtles die rather than their meaningful
metabolic rate maintaining biochemical homeostasis.
And, indeed, the higher the rate of heat dissipation, the
shorter the survival time in anoxic hibernating turtles
(Herbert & Jackson 1985; Ultsch et al. 1985).

We have avoided using the term down-regulation,
although it is widely present in the literature (Hochachka
& Lutz 2001; Storey & Storey 2004). There is some ambi-
guity associated with usage of this term. Regulation
per se implies a meaningful controlling process initiated
by the organism. Importantly, regulation by definition
is an optional process, i.e. the organism can either
perform it or not, or perform it in different ways. In
this sense, metabolic down-regulation would imply
the choice of the organism to reduce its metabolic rate.
The term ‘hypobiosis’ introduced by Guppy & Withers
(1999) perfectly matches this situation. Guppy & Withers
(1999) wrote, for example, that some frogs develop
aestivating cocoons, depress metabolism and enter the
state of hypobiosis well before the dryness conditions
actually set in. That is, the decrease of metabolic rate
in these frogs is not dictated by the environmental
conditions, but is a consequence of control by the
organism itself.

For comparison, when the rates of  all oxygen-
consuming biochemical processes drop radically at
the onset of anoxia, this is not down-regulation. The
organism has no option, its metabolic rate inevitably
decreases as dictated by the physicochemical oxygen-
deprived environment. Nevertheless, the word down-
regulation is often used just to indicate the decline of
metabolic rates during anoxia or other states of meta-
bolic depression (Hochachka & Lutz 2001). Similarly,
there is no option for high metabolic rates in a state of
complete desiccation or freezing, owing to absence of
liquid water in both cases.

Another caveat for use of the term ‘down-regulation’
is that it can refer not to the residual low rates of heat
dissipation in the metabolically depressed state, but
to the processes of biochemical conservation of tissues
that precede this state. Recent research has revealed
an impressive variety of mechanisms that can be used
by the organism to protect its cellular structures
from spontaneous degradation. Reversible phos-
phorylation, suppression of enzyme activity, extension

4
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of enzyme life span and channel ‘arrest’ preventing the
leakage of ions through membranes (Hochachka &
Lutz 2001; Storey & Storey 2004) are among the best
studied. These biochemical modifications undoubt-
edly result from meaningful, genetically programmed
controlling biochemical processes. Biochemical con-
servation can take place both in the regime of aban-
doned metabolic control, where it is a prerequisite of
prolonged survival, such as in anoxia-tolerators, and
in the regime of  minimum metabolic control, such as
in hibernating mammals, which have to conserve, in
an inactive state, a major part of the physiological
machinery responsible for locomotion, feeding and
other activities. However, biochemical conservation
(which does represent a process of metabolic down-
regulation and results in a metabolically depressed
state) typically takes a short time before or at the very
onset of the adverse conditions. For example, in cells of
strong anoxia-tolerators, such as turtles, that survive
days and months of anoxia, protective biochemical
rearrangements can take approximately 100 min
(Hochachka & Lutz 2001).

Thus, the existence of regulated, organism-controlled
processes of biochemical conservation at the onset of
anoxia does not contradict our proposition that the
residual rates of heat dissipation during anoxia in the
studied species can be predominantly chaotic. These
rates will then reflect the fact that the organism is un-
able to conserve itself  completely. But, if  the degree of
conservation is high, the organism can suppress the
chaotic processes of biochemical degradation to a very
low level. The term ‘cryptobiosis’, used to denote phys-
iological states with practically zero rates of heat dis-
sipation under adverse environmental conditions such
as anoxia, desiccation and starvation (in some taxa)
(Guppy & Withers 1999; Clegg 2001; Gutiérrez et al.
2001) corresponds therefore to the regime of abandoned
metabolic control with nearly perfect biochemical
conservation. Survival times of organisms in this state
can be very long, from years to possibly centuries
(Clegg 2001). At the same time, there can be cases of
abandoned metabolic control with poor or no bio-
chemical conservation, with short survival times and
relatively high rates of heat dissipation. Organisms
typically experiencing only very short periods of
anoxia in their natural environments do not need an
advanced mechanism of biochemical conservation.

    

This regime is truly life-supporting. So long as the
internal energy reserves of  the animal persist, no
detrimental changes accumulate in the animal body,
because this energy is spent on supporting the existing
biochemical and physiological order. For example,
4 months of muscle disuse do not produce any signi-
ficant muscle atrophy in hibernating bears (Tinker,
Harlow & Beck 1998). At the cellular level, such
fundamental order-supporting mechanisms as ion

pumping and basic protein turnover continue to func-
tion in this regime (Guppy & Withers 1999).

Based on the analysis of 173 species with body
masses ranging from 1·2 mg to 80 kg, and experi-
mental temperatures from −1·7 to 30 °C, it was shown
that minimum life-supporting mass-specific metabolic
rates are practically independent of body mass and tem-
perature, and constitute on average 0·1 W kg−1 (Table 1).
This low rate of controlling metabolism appears to be
sufficient for living cells to perform important func-
tions at the organismal level even during the period of
metabolic depression, such as lactation in hibernating
bears (Tinker et al. 1998), construction of protective
epiphragms in aestivating snails (Withers et al. 1998)
and oogenesis in aestivating amphibians (Seymour 1973).

Log–log regression of minimum mass-specific meta-
bolic rates q on body mass M yielded a weak depend-
ence, q ∝ M −0·05 with P = 0·003 and r2 = 0·05 (Table 1).
This dependence would have produced a tenfold range
of q-values over 20 orders of magnitude range in body
mass. Do the very smallest organisms such as bacteria
indeed possess significantly higher metabolic rates during
periods of metabolic depression than metazoans?
According to the available evidence, the answer is no.
In a study of endogenous metabolic rates of 56 bac-
terial species, the 10 lowest values were found to average
0·2 W kg−1 (Makarieva et al. 2005c), which is directly
comparable to the values obtained here for metazoans
(Table 1). At the other end of the size scale are the largest
ectothermic animals. Carey et al. (1982) estimated meta-
bolic rate of the White Shark Carcharodon carcharias
(body mass about 900 kg) from the data on the rate of
body warming to be about 0·2 W kg−1. In endotherms,
the largest organisms depress metabolic rate by a smaller
percentage than the smallest ones (Geiser 2004). If  this
rule applies to ectotherms too, then the lowest meta-
bolic rate supporting life of the shark cannot be much
smaller than the above value, i.e. it should fit accu-
rately into the established range of  minimum life-
supporting values (Table 1). Summing up, there is no
evidence in favour of the existence of a dependence of
minimum mass-specific metabolic rate on body mass.
This is consistent with the expectation that, to the
degree that the living matter is biochemically universal
among organisms of different body sizes, the minimum
metabolic rate needed to sustain orderliness of a unit
live mass should also be size-independent (Makarieva,
Gorshkov & Li 2003, 2005c).

It remains to be ascertained what the most appro-
priate mass basis is for determining the proposed uni-
versality of minimum life-supporting mass-specific
metabolic rate: whether it should be wet mass, dry
mass, carbon mass, etc. In the present study, Group III
coldwater arthropods display metabolic rates that are
almost twice lower than in Group II terrestrial arthro-
pods (Table 1). This discrepancy might be a conse-
quence of a higher water content in Group III species.
For example, in the seven coldwater copepod species
studied by Kawall et al. (2001) mean wet mass/dry
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mass ratio is 6·1 ± 0·7 (SE), which is higher than the
characteristic value of 3·3 corresponding to a typical
70% water content in terrestrial arthropods. If
expressed per unit dry mass basis, metabolic rates of
Group II and III species can be more similar than per
unit wet mass basis.

    


When normal biochemical functioning is impossible
(e.g. in the absence of oxygen for obligate aerobes), the
organism cannot sustain its biochemical order. In such
cases, living tissues are left to degrade. However, if  the
adverse period is relatively short and tissue protection
is good enough for the amount of  accumulating
damage not to reach a critical threshold, the animals can
survive environmental stress in the regime of aban-
doned metabolic control, as suggested by us for the 32
anoxic species analysed in the present paper.

It is important to stress that this does not mean that
anoxic survival must invariably occur in this regime.
Apparently, there are obligate and facultative anaer-
obes capable of sustainable, metabolically controlled
existence under anoxic conditions. At the same time,
species under normoxic conditions of minimum meta-
bolic control can also exhibit elements of abandoned
metabolic control. For example, an inherent pattern in
mammalian hibernation is periodic arousal accom-
panied by elevation of metabolic rate (McNab 2002).
This might be an indication that during torpor, bio-
chemical order in some tissues is not fully sustained
and the accumulating disorder has to be repaired by
the organism via more vigorous metabolic control dur-
ing arousals. Periodic bursts of elevated metabolic rate
at the time-scale of days and weeks have also been
recorded in some aestivating snails (Schmidt-Nielsen
et al. 1971) and diapausing insects (Denlinger, Willis &
Fraenkel 1972).

A critical energy loss threshold corresponding to
50% survival in anoxia was established at around
Ψ = 70 kJ (kg DM)−1 (Fig. 4b). Anoxic metabolic rates
of the cysts of Artemia franciscana (LT50 is about
2·5 years) estimated from the rate of  the decrease in
the nucleotide pool (Warner & Clegg 2001), qA = 3 ×
10−6 W (kg DM)−1, indicate that the embryos die well
before the critical threshold of 70 kJ (kg DM)−1 is
reached. Energy loss during 2·5 years of anoxia
amounts to less than 1 kJ (kg DM)−1. This could be an
indication that the reported metabolic rates have been
significantly underestimated. Warner & Clegg (2001)
remark that it is unclear which processes in the
Artemia embryo could require the expended free
energy. In the framework of the present consideration
the answer is transparent. No meaningful processes
make use of this energy. Instead, this energy is released
during spontaneous chaotic biochemical reactions, the
studied nucleotide store simply being one of the most
reactive pools.

Accumulating cell damage can account for the
observed increase in postanoxic time to hatching with
increasing anoxia exposure (i.e. embryos exposed to
less than a month of anoxia hatch in 23 h, while those
exposed to 5·6 years hatch in 388 h only) (Warner &
Clegg 2001). Extra time can be used by the animals to
heal tissue damage accumulated during prolonged
anoxia. Post-anoxic ‘overshoot’ (i.e. the increase of
postanoxic metabolic rates above the normoxic value
before anoxia) (e.g. Oeschger et al. 1992; Moratzky
et al. 1993) might also be a consequence of  rapid
compensation of the detrimental consequences of
anoxia or any other environmental stress survived in
the regime of abandoned metabolic control (Block,
Worland & Bale 1998).

Besides anoxia, survival of higher organisms during
freezing and desiccation is also likely to occur in the
regime of abandoned metabolic control. In both cases,
absence of liquid water in tissues should automatically
slow down any biochemical reactions, even if  no
depression of metabolic rate is performed by the
organism itself. Special protecting mechanisms may
include, for example, degradation of mitochondria in
frozen animals (Danks, Kukal & Ring 1994). In the
regime of abandoned metabolic control mitochondria
could serve as the undesirable hotspots of spontaneous
chaotic biochemical reactions, so their elimination should
contribute to biochemical stabilization of the cells.

Generally, any organism capable of conserving its
tissues to the degree where the residual chaotic bio-
chemical reactions occur at a rate qA << Ψ/t, where t is
the desired survival period and Ψ ∼ 100 kJ (kg DM)−1,
should be able to safely abandon metabolic control
with no threat to viability. For example, dry spores of
the bacterium Bacillus cereus having a metabolic rate
of less than 6 × 10−4 W (kg DM)−1 (Desser & Broda 1965)
should be able to survive for at least several years.

If  the regime of the abandoned metabolic control
effectively represents ‘slow death’, the rate of biochem-
ical reactions in such animals should be similar to that
of dead organisms under similar conditions. To our
knowledge, no studies have explicitly examined this
problem. It is noteworthy that the range of respiration
rates in dead wood tissues (coarse litter) in central
Amazon forests, 0·014–1·0 µg C (g wood C)−1 min−1

(Chambers, Schimel & Nobre 2001), which correspond
to energy dissipation rates of 0·0009–0·06 W kg−1 (at
10% carbon content in wood tissues), for the most
part falls outside the 95% CI of controlled minimum
metabolic rates, which is from 0·02 to 0·67 W kg−1

and is within the lower part of the 95% CI of anoxic
rates (Table 1).

Sinclair, Klok & Chown (2004) studied metabolic rates
of the freeze-tolerant Antarctic caterpillar Pringleophaga
marioni (0·3 g) frozen to −5·8 °C, −6 °C and −18 °C.
Metabolic rate of live caterpillars at −5·8 °C was about
0·1 W kg−1, well in the range of minimum life-supporting
metabolic rates in arthropods (Table 1). At −6 °C
metabolic rate of the caterpillars dropped abruptly by

5
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approximately twofold with Q10 = 2 × 103. A similar
abrupt drop of metabolic rate was observed in frozen
as compared to supercooled Goldenrod Gall Fly larvae,
Eurosta solidaginis, and some other species (Irwin &
Lee 2002). These declines in metabolic rate can be
readily interpreted as the moment when metabolic
control is abandoned (e.g. cessation of transmembrane
ion pumping) (Sinclair et al. 2004), while the residual
rate of heat dissipation can be considered the rate of
spontaneous disorder accumulation. In this case, the
benefit of energy savings associated with the regime of
abandoned metabolic control (e.g. freezing) can be
nullified by the detrimental effects of the chaotic bio-
chemical processes occurring in the organism. This
possibility has not been mentioned in discussions of
the ways in which Eurosta solidaginis optimizes winter
survival (Irwin & Lee 2002).

In our view, the proposed conceptual distinction
between the regimes of  minimum and abandoned
metabolic control, as well as the established properties
of minimum life-supporting metabolic rates, can yield
insights into several ecological questions. For example,
as far as mass-specific metabolic rate drops with
increasing body size within specified taxonomic
groups, a temperature-independent lower limit to
mass-specific metabolic rate would pose an upper limit
to body size that can be attained by organisms of a
given taxon at a given temperature. In other words, in
a given taxon the largest species living at low ambient
temperatures will have to be smaller than the largest
species from the same taxon living at high tempera-
tures (see Makarieva, Gorshkov & Li 2005d,e).
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